O problema cu matrice
Moderators: Bogdan Posa, Laurian Filip, Beniamin Bogosel, Radu Titiu, Marius Dragoi
- bogdanl_yex
- Pitagora
- Posts: 91
- Joined: Thu Jan 31, 2008 9:58 pm
- Location: Bucuresti
O problema cu matrice
Fie \( A,B \in M_{n}(C) \) si \( \omega \) o radacina de ordinul \( p \) a unitatii. Aratati ca pentru orice matrice cu proprietatea ca \( AB= \omega BA \) are loc relatia \( (A+B)^{p}=A^{p}+B^{p} \).
"Don't worry about your difficulties in mathematics; I can assure you that mine are still greater"(Albert Einstein)
-
Marius Mainea
- Gauss
- Posts: 1077
- Joined: Mon May 26, 2008 2:12 pm
- Location: Gaesti (Dambovita)