O problema cu matrice

Moderators: Bogdan Posa, Laurian Filip, Beniamin Bogosel, Radu Titiu, Marius Dragoi

Post Reply
User avatar
bogdanl_yex
Pitagora
Posts: 91
Joined: Thu Jan 31, 2008 9:58 pm
Location: Bucuresti

O problema cu matrice

Post by bogdanl_yex »

Fie \( A,B \in M_{n}(C) \) si \( \omega \) o radacina de ordinul \( p \) a unitatii. Aratati ca pentru orice matrice cu proprietatea ca \( AB= \omega BA \) are loc relatia \( (A+B)^{p}=A^{p}+B^{p} \).
"Don't worry about your difficulties in mathematics; I can assure you that mine are still greater"(Albert Einstein)
Marius Mainea
Gauss
Posts: 1077
Joined: Mon May 26, 2008 2:12 pm
Location: Gaesti (Dambovita)

Post by Marius Mainea »

Se demonstreaza prin inductie dupa n relatia: \( (A+B)^n=A^n+(1+\omega+\omega^2+...+\omega^{n-1})\sum_{k=1}^{n-1}C_n^kA^{n-k}B^k+B^n \)
Post Reply

Return to “Algebra”