O matrice \( A \in M_{n}(C) \) este singulara daca si numai daca exista o matrice \( B \in M_{n}(C) \), nenula, astfel incat pentru orice \( p \in N^{*},\ (A+B)^{p}=A^{p}+B^{p} \).
Ion Savu
O alta matrice singulara...
Moderators: Bogdan Posa, Laurian Filip, Beniamin Bogosel, Radu Titiu, Marius Dragoi
- bogdanl_yex
- Pitagora
- Posts: 91
- Joined: Thu Jan 31, 2008 9:58 pm
- Location: Bucuresti
O alta matrice singulara...
"Don't worry about your difficulties in mathematics; I can assure you that mine are still greater"(Albert Einstein)
- Beniamin Bogosel
- Co-admin
- Posts: 710
- Joined: Fri Mar 07, 2008 12:01 am
- Location: Timisoara sau Sofronea (Arad)
- Contact:
Pentru cealalta implicatie: presupunem ca \( A \) este inversabila.
-\( p=2 \Rightarrow AB+BA=0 \)
-\( p=3 \Rightarrow (A+B)(A^2+B^2)=A^3+B^3 \Rightarrow AB^2+BA^2=0 \).
Deci \( AB^2=-BA^2=ABA \) si analog(daca consideram produsul de la p=3 in ordine inversa \( B^2A=-A^2B=ABA \)
Deci \( AB^2=B^2A \).
\( AB^2+BA^2=-BAB-ABA \). Deci \( ABA+BAB=0\Rightarrow ABA-AB^2=0\Rightarrow BA=B^2\Rightarrow \)
\( \Rightarrow BA^2=ABA\Rightarrow AB=BA=0\Rightarrow B=0 \). Contradictie. Deci \( A \) nu este inversabila.
-\( p=2 \Rightarrow AB+BA=0 \)
-\( p=3 \Rightarrow (A+B)(A^2+B^2)=A^3+B^3 \Rightarrow AB^2+BA^2=0 \).
Deci \( AB^2=-BA^2=ABA \) si analog(daca consideram produsul de la p=3 in ordine inversa \( B^2A=-A^2B=ABA \)
Deci \( AB^2=B^2A \).
\( AB^2+BA^2=-BAB-ABA \). Deci \( ABA+BAB=0\Rightarrow ABA-AB^2=0\Rightarrow BA=B^2\Rightarrow \)
\( \Rightarrow BA^2=ABA\Rightarrow AB=BA=0\Rightarrow B=0 \). Contradictie. Deci \( A \) nu este inversabila.