Pentru orice matrice \( X \in M_{n}(R) \) notam cu \( s(X) \) suma tuturor elementelor sale. Aratati ca pentru orice matrice \( A,B \in M_{n}(R) \) avem: \( s(AB^{T})s(BA^{T}) \leq s(AA^{T})s(BB^{T}) \), unde \( X^{T} \) este transpusa matricei \( X \).
Vasile Pop, Cluj
Suma elementelor dintr-o matrice
Moderators: Bogdan Posa, Laurian Filip, Beniamin Bogosel, Radu Titiu, Marius Dragoi
- bogdanl_yex
- Pitagora
- Posts: 91
- Joined: Thu Jan 31, 2008 9:58 pm
- Location: Bucuresti
Suma elementelor dintr-o matrice
"Don't worry about your difficulties in mathematics; I can assure you that mine are still greater"(Albert Einstein)
- Beniamin Bogosel
- Co-admin
- Posts: 710
- Joined: Fri Mar 07, 2008 12:01 am
- Location: Timisoara sau Sofronea (Arad)
- Contact:
Daca facem calculele pentru \( X=(x_{ij}) \) si \( A=(a_{ij}),\ B=(b_{ij}) \) avem
\( s(XX^T)=\sum\limits_{i=1}^n(x_{1i}+...+x_{ni})^2 \)
\( s(AB^T)=\sum\limits_{i=1}^n(a_{1i}+...+a_{ni})(b_{1i}+...+b_{ni}) \)
Evident \( s(X)=s(X^T) \) deci \( s(AB^T)=s(BA^T) \).
Astfel inegalitatea devine
\( s(AB^T)^2\leq s(AA^T)s(BB^T)\Leftrightarrow \left(\sum\limits_{i=1}^n(a_{1i}+...+a_{ni})(b_{1i}+...+b_{ni})\right)^2\leq (\sum\limits_{i=1}^n(a_{1i}+...+a_{ni})^2)(\sum\limits_{i=1}^n(b_{1i}+...+b_{ni})^2) \)
care este inegalitatea Cauchy-Buniakowski-Schwarz.
\( s(XX^T)=\sum\limits_{i=1}^n(x_{1i}+...+x_{ni})^2 \)
\( s(AB^T)=\sum\limits_{i=1}^n(a_{1i}+...+a_{ni})(b_{1i}+...+b_{ni}) \)
Evident \( s(X)=s(X^T) \) deci \( s(AB^T)=s(BA^T) \).
Astfel inegalitatea devine
\( s(AB^T)^2\leq s(AA^T)s(BB^T)\Leftrightarrow \left(\sum\limits_{i=1}^n(a_{1i}+...+a_{ni})(b_{1i}+...+b_{ni})\right)^2\leq (\sum\limits_{i=1}^n(a_{1i}+...+a_{ni})^2)(\sum\limits_{i=1}^n(b_{1i}+...+b_{ni})^2) \)
care este inegalitatea Cauchy-Buniakowski-Schwarz.