Matrice ordin 3 cu det(A^2+I_3)=0

Moderators: Bogdan Posa, Laurian Filip, Beniamin Bogosel, Radu Titiu, Marius Dragoi

Post Reply
User avatar
Cezar Lupu
Site Admin
Posts: 612
Joined: Wed Sep 26, 2007 2:04 pm
Location: Bucuresti sau Constanta
Contact:

Matrice ordin 3 cu det(A^2+I_3)=0

Post by Cezar Lupu »

Fie \( A\in M_{3}(\mathbb{R}) \) o matrice astfel incat \( \det(A^2+I_{3})=0 \). Sa se arate ca:

i) \( \det (A+I_{3})-\det (A-I_{3})=4 \);

ii) \( \tr(A^3)=\tr^3 (A) \).

Cezar Lupu, lista scurta ONM 2006
Last edited by Cezar Lupu on Wed Feb 20, 2008 5:51 pm, edited 1 time in total.
An infinite number of mathematicians walk into a bar. The first one orders a beer. The second orders half a beer. The third, a quarter of a beer. The bartender says “You’re all idiots”, and pours two beers.
User avatar
Ciprian Oprisa
Pitagora
Posts: 55
Joined: Tue Feb 19, 2008 8:01 pm
Location: Lyon sau Cluj sau Baia de Cris

Post by Ciprian Oprisa »

\( \det(A^2+I_3)=0\Rightarrow\det(A-iI_3)\det(A+iI3)=0 \)

\( \Rightarrow|\det(A-iI_3)|^2=0 \) si \( |\det(A+iI_3)|^2=0 \)

\( \Rightarrow\det(iI_3-A)=0 \) si \( \det(-iI_3-A)=0 \), ceea ce inseamna ca \( i \) si \( -i \) sunt valori proprii pentru A. Fie \( r \) cea de-a 3-a valoare.

Avem ca \( f_A(\lambda)=\det(\lambda I_3-A)=(\lambda-i)(\lambda+i)(\lambda-r)=(\lambda^2+1)(\lambda-r) \)

i) \( \det(A+I_3)-\det(A-I_3)=-f_A(-1)+f_A(1)= \)
\( -((-1)^2+1)(-1-r)+(1^2+1)(1-r)=4. \)

ii) \( \tr(A^3)=i^3+(-i)^3+r^3=r^3=(i-i+r)^3=\tr(A)^3. \)
Un lucru este ceea ce este, nu ceea ce pare a fi.
Post Reply

Return to “Algebra”