Fie \( A\in M_{3}(\mathbb{R}) \) astfel incat \( trA=trA^2=0 \). Sa se arate ca
\( \det(A^2+I_{3})=( \det A )^2+1 \).
Radu Gologan, lista scurta ONM 2003
Matrice ordin 3 cu urma lui A si A^2 nula
Moderators: Bogdan Posa, Laurian Filip, Beniamin Bogosel, Radu Titiu, Marius Dragoi
- Cezar Lupu
- Site Admin
- Posts: 612
- Joined: Wed Sep 26, 2007 2:04 pm
- Location: Bucuresti sau Constanta
- Contact:
Matrice ordin 3 cu urma lui A si A^2 nula
An infinite number of mathematicians walk into a bar. The first one orders a beer. The second orders half a beer. The third, a quarter of a beer. The bartender says “You’re all idiots”, and pours two beers.
- Radu Titiu
- Thales
- Posts: 155
- Joined: Fri Sep 28, 2007 5:05 pm
- Location: Mures \Bucuresti
\( f(X)=\det(A-XI)=-X^3+Tr(A)X^2-Tr(A^*)X+\det(A)I \)
Dar
\( ab+bc+ca=\frac{1}{2}[(a+b+c)^2-a^2-b^2-c^2] \) \( \Leftrightarrow \) \( Tr(A^*)=\frac{1}{2}[(Tr(A))^2-Tr(A^2)]=0 \) (unde a, b, c sunt radacinile complexe ale ecuatiei P(x)=0).
Asadar \( f(X)=-X^3+d \), unde d=det(A). Astfel identitatea de demonstrat devine: \( f(-i)f(i)=d^2+1 \Leftrightarrow d^2-i^2=d+1 \).
Dar
\( ab+bc+ca=\frac{1}{2}[(a+b+c)^2-a^2-b^2-c^2] \) \( \Leftrightarrow \) \( Tr(A^*)=\frac{1}{2}[(Tr(A))^2-Tr(A^2)]=0 \) (unde a, b, c sunt radacinile complexe ale ecuatiei P(x)=0).
Asadar \( f(X)=-X^3+d \), unde d=det(A). Astfel identitatea de demonstrat devine: \( f(-i)f(i)=d^2+1 \Leftrightarrow d^2-i^2=d+1 \).
A mathematician is a machine for turning coffee into theorems.