Aratati ca sirul tinde la infinit

Moderators: Bogdan Posa, Laurian Filip, Beniamin Bogosel, Radu Titiu, Marius Dragoi

Post Reply
turcas
Pitagora
Posts: 83
Joined: Fri Sep 28, 2007 1:48 pm
Location: Simleu Silvaniei, jud Salaj
Contact:

Aratati ca sirul tinde la infinit

Post by turcas »

Fie \( (a_n)_{n \in \mathbb{N}} \) un sir de numere reale strict pozitive astfel incat \( a_n > a_0, n \in \mathbb{N} \).

Sa se arate ca \( \lim\limits_{n \to \infty} \sum_{k=0}^n \left(\frac{a_k}{a_{n-k}} \right)^k= \infty. \)

Concursul interjudetean "Teodor Topan", Subiectul IV
User avatar
Tudor Micu
Pitagora
Posts: 51
Joined: Thu Mar 06, 2008 9:39 pm
Location: Cluj-Napoca, Romania

Post by Tudor Micu »

\( \sum_{k=0}^{n}(\frac{a_k}{a_{n-k}})^k=1+\frac{a_1}{a_{n-1}}+(\frac{a_2}{a_{n-2}})^2+(\frac{a_3}{a_{n-3}})^3+\ldots+(\frac{a_{n-3}}{a_3})^{n-3}+(\frac{a_{n-2}}{a_2})^{n-2}+(\frac{a_{n-1}}{a_1})^{n-1}+(\frac{a_{n}}{a_0})^n \)
Observam ca \( (\frac{a_n}{a_0})^n \) tinde la infinit, iar restul termenilor sumei sunt pozitivi. Rezulta ca evident \( \lim\limits_{n\to\infty}\sum_{k=0}^{n}(\frac{a_k}{a_{n-k}})^k=\infty \)
Tudor Adrian Micu
Universitatea "Babes Bolyai" Cluj-Napoca
Facultatea de Matematica si Informatica
User avatar
Laurian Filip
Site Admin
Posts: 344
Joined: Sun Nov 25, 2007 2:34 am
Location: Bucuresti/Arad
Contact:

Post by Laurian Filip »

Tudor Micu wrote:\( \sum_{k=0}^{n}(\frac{a_k}{a_{n-k}})^k=1+\frac{a_1}{a_{n-1}}+(\frac{a_2}{a_{n-2}})^2+(\frac{a_3}{a_{n-3}})^3+\ldots+(\frac{a_{n-3}}{a_3})^{n-3}+(\frac{a_{n-2}}{a_2})^{n-2}+(\frac{a_{n-1}}{a_1})^{n-1}+(\frac{a_{n}}{a_0})^n \)
Observam ca \( (\frac{a_n}{a_0})^n \) tinde la infinit, iar restul termenilor sumei sunt pozitivi. Rezulta ca evident \( \lim\limits_{n\to\infty}\sum_{k=0}^{n}(\frac{a_k}{a_{n-k}})^k=\infty \)
\( a_n=a_0+\frac{1}{n^2} \) e un sir care indeplineste conditia. Crezi ca \( (\frac{a_n}{a_0})^n \) tinde la infinit?
User avatar
Laurian Filip
Site Admin
Posts: 344
Joined: Sun Nov 25, 2007 2:34 am
Location: Bucuresti/Arad
Contact:

Post by Laurian Filip »

\( \left( \frac{a_k}{a_{n-k}} \right)^k+\left(\frac{a_{n-k}}{a_k} \right)^{n-k}>1 \)
(cel putin una dintre fractii e supraunitara)
grupam 2 cate 2 si rezulta

\( \sum_{k=0}^n \left(\frac{a_k}{a_{n-k}}\right )^k > \frac{n}{2} \rightarrow \infty \)
turcas
Pitagora
Posts: 83
Joined: Fri Sep 28, 2007 1:48 pm
Location: Simleu Silvaniei, jud Salaj
Contact:

Post by turcas »

Tudor Micu wrote:\( \sum_{k=0}^{n}(\frac{a_k}{a_{n-k}})^k=1+\frac{a_1}{a_{n-1}}+(\frac{a_2}{a_{n-2}})^2+(\frac{a_3}{a_{n-3}})^3+\ldots+(\frac{a_{n-3}}{a_3})^{n-3}+(\frac{a_{n-2}}{a_2})^{n-2}+(\frac{a_{n-1}}{a_1})^{n-1}+(\frac{a_{n}}{a_0})^n \)
Observam ca \( (\frac{a_n}{a_0})^n \) tinde la infinit, iar restul termenilor sumei sunt pozitivi. Rezulta ca evident \( \lim\limits_{n\to\infty}\sum_{k=0}^{n}(\frac{a_k}{a_{n-k}})^k=\infty \)
La fel daca se va ajunge la \( \left( \frac{n+1}{n} \right)^n \) acesta va tinde la \( e \). Majoritatea concurentilor s-au pacalit as spune cu aceasta rezolvare.
User avatar
Ciprian Oprisa
Pitagora
Posts: 55
Joined: Tue Feb 19, 2008 8:01 pm
Location: Lyon sau Cluj sau Baia de Cris

Post by Ciprian Oprisa »

Totusi, mi se pare a fi in plus conditia \( a_n>a_0 \). Dupa cum se observa in dezvoltarea sumei, \( a_n \) apare doar in ultimul termen, si cum acesta nu tinde la infinit neaparat, conditia pare valabila pentru orice sir pozitiv (dupa cum a demostrat si Laurian).
Are cineva vreo explicatie?
Un lucru este ceea ce este, nu ceea ce pare a fi.
User avatar
Tudor Micu
Pitagora
Posts: 51
Joined: Thu Mar 06, 2008 9:39 pm
Location: Cluj-Napoca, Romania

Post by Tudor Micu »

Da, intr-adevar n-am prea fost atent acolo :oops:
Dupa ce am trimis mesajul nu m-am mai uitat peste el.
Relativ la \( a_n>a_0 \) probabil ca aceasta conditie era necesara pentru solutia din barem. Intr-adevar in conditiile solutiei lui Laurian e inutila.
Tudor Adrian Micu
Universitatea "Babes Bolyai" Cluj-Napoca
Facultatea de Matematica si Informatica
turcas
Pitagora
Posts: 83
Joined: Fri Sep 28, 2007 1:48 pm
Location: Simleu Silvaniei, jud Salaj
Contact:

Post by turcas »

Fie \( b_n=\sum_{k=1}^n \left( \frac{a_k}{a_{n-k}} \right)^k +1 \).
Atunci il scriem pe \( b_n \) astfel:

\( b_n= \sum_{k=1}^n \frac{1}{k} \left[ k \left( \frac{a_k}{a_{n-k}} \right)^k \right]+1 \).

Daca notam \( S_n = \sum_{k=1}^n \frac{1}{k} \), atunci din Inegalitatea ponderata a mediilor obtinem :

\( b_n \geq S_n \left(\prod_{k=1}^n k^{\frac{1}{k}} \right)^{S_n} \cdot \left(\prod_{k=1}^n \frac{a_k}{a_{n-k}} \right)^{S_n}+1 \), adica

\( b_n \geq 1+S_n \left( \frac{a_n}{a_0} \right)^{S_n} \Rightarrow \)

\( b_n \geq 1+S_n \).
Dar am demonstrat ca \( \lim_{n \to \infty}{S_n}= \infty \Rightarrow \lim_{n \to \infty} b_n=\infty \).

Asta era in mare solutia din barem. Destul de alambicata, parerea mea. Probabil problema a fost rezultatul unor probleme mai complicate de analiza...

Oricum solutia pe care a prezentat-o Filip mi se pare corecta, daca analizam cele 2 cazuri (n-par si n-impar).
Post Reply

Return to “Analiza matematica”