abbb

Moderators: Bogdan Posa, Laurian Filip

Post Reply
User avatar
Amaranth
Thales
Posts: 128
Joined: Sun Oct 19, 2008 5:44 pm

abbb

Post by Amaranth »

Fie numarul natural \( \overline{abbb} \) ; cu suma cifrelor 15; a,b nr consecutive... Aflati numarul :wink:
Last edited by Amaranth on Tue Nov 04, 2008 1:51 pm, edited 6 times in total.
In all this world there is only one pure and magic thing... and it is called PURPLE!
Claudiu Mindrila
Fermat
Posts: 520
Joined: Mon Oct 01, 2007 2:25 pm
Location: Targoviste
Contact:

Post by Claudiu Mindrila »

Code: Select all

\overline{aabb}
=\( \overline{aabb} \) 8)
elev, clasa a X-a, C. N. "C-tin Carabella", Targoviste
User avatar
naruto
Pitagora
Posts: 55
Joined: Tue Oct 14, 2008 2:27 pm

Post by naruto »

Dar care e mai mare? a sau b? Ca pot fi doua cazuri: a=b+1 sau b=a+1.

Daca a=b+1 => b+1+b+b+b=15 => 4b+1=15 => 4b=14 dar nu se poate.

Daca b=a+1 => a+a+1+a+1+a+1=15 => 4a=12 => a=3 si b=4
User avatar
Amaranth
Thales
Posts: 128
Joined: Sun Oct 19, 2008 5:44 pm

Post by Amaranth »

naruto wrote:Dar care e mai mare? a sau b? Ca pot fi doua cazuri: a=b+1 sau b=a+1.

Daca a=b+1 => b+1+b+b+b=15 => 4b+1=15 => 4b=14 dar nu se poate.

Daca b=a+1 => a+a+1+a+1+a+1=15 => 4a=12 => a=3 si b=4
B > A => cazul 2 => 3444 :wink:
In all this world there is only one pure and magic thing... and it is called PURPLE!
User avatar
miruna.lazar
Bernoulli
Posts: 224
Joined: Wed Oct 08, 2008 8:41 pm
Location: Tulcea

Post by miruna.lazar »

Si eu am obtinut la fel , tot 3444. Si eu am facut asa , Naruto. Numai ca nu se poate ca a > b . Deci a < b . Deci nu sunt doua variante...E doar una : cea corecta :D . Dar eu zic ca ai fi putut s-o postezi la a V-a ca-i usoara
( ^ _ ^ )
Post Reply

Return to “Clasa a VI-a”