Fie \( p \) un polinom cu coeficienti intregi si fie numerele intregi \( a_1<a_2<...<a_k \).
a) Demonstrati ca exista \( a \in \mathbb{Z} \) astfel incat \( p(a_i)|p(a),\ \forall i=1,...,k \).
b) Exista intotdeauna un \( a \in \mathbb{Z} \) astfel incat \( p(a_1)\cdot p(a_2)...\cdot p(a_k)|p(a) \)?
IMC 2008
IMC 2008 ziua 1 problema 3
Moderators: Laurian Filip, Filip Chindea, maky, Cosmin Pohoata
- Beniamin Bogosel
- Co-admin
- Posts: 710
- Joined: Fri Mar 07, 2008 12:01 am
- Location: Timisoara sau Sofronea (Arad)
- Contact:
IMC 2008 ziua 1 problema 3
Yesterday is history,
Tomorow is a mistery,
But today is a gift.
That's why it's called present.
Blog
Tomorow is a mistery,
But today is a gift.
That's why it's called present.
Blog
- Beniamin Bogosel
- Co-admin
- Posts: 710
- Joined: Fri Mar 07, 2008 12:01 am
- Location: Timisoara sau Sofronea (Arad)
- Contact:
Pentru b) luam p(X)=2(2X+1).
Pentru a) cred ca merge sa luam sistemul \( a\equiv a_i (mod\ p(a_i)) \). Nu in forma asta pentru ca nu putem aplica lema chinezeasca a resturilor, dar dupa ce scriem pentru fiecare factor prim la puterea maxima sistemul, putem sa o aplicam.
Pentru a) cred ca merge sa luam sistemul \( a\equiv a_i (mod\ p(a_i)) \). Nu in forma asta pentru ca nu putem aplica lema chinezeasca a resturilor, dar dupa ce scriem pentru fiecare factor prim la puterea maxima sistemul, putem sa o aplicam.
Yesterday is history,
Tomorow is a mistery,
But today is a gift.
That's why it's called present.
Blog
Tomorow is a mistery,
But today is a gift.
That's why it's called present.
Blog