Gasiti toate functiile \( f: (0, \infty) \mapsto (0, \infty)\i \) pentru care \( \frac {\left( f(w) \right)^2 + \left( f(x) \right)^2}{f(y^2) + f(z^2) } = \frac {w^2 + x^2}{y^2 + z^2} \) pentru orice numere reale strict pozitive \( w,x,y,z, \) avand proprietatea ca \( wx=yz \).
Hojoo Lee, South Korea
OIM 2008, ziua 2, pb 1
Moderators: Filip Chindea, maky, Cosmin Pohoata
-
Claudiu Mindrila
- Fermat
- Posts: 520
- Joined: Mon Oct 01, 2007 2:25 pm
- Location: Targoviste
- Contact:
OIM 2008, ziua 2, pb 1
elev, clasa a X-a, C. N. "C-tin Carabella", Targoviste
- Sabin Salajan
- Euclid
- Posts: 29
- Joined: Tue Apr 22, 2008 11:12 am
- Location: Satu Mare
Solutie:
Punem \( w=x=y=z \), obtinem \( \frac {2f(w)^2}{2f(w^2)}=1 \), deci \( f(w)^2=f(w^2) \) de unde \( f(1)=1 \).
Acum luam cvadrupla \( (w,1,sqrt w,sqrt w) \) si notam \( f(w)=a \), deci \( f(sqrt w)^2=a \) => \( \frac{a^2+1}{2a}=\frac{w^2+1}{2w} => a+\frac{1}{a}=w+\frac{1}{w}=>a-w=\frac{a-w}{aw} => a=w \) sau \( aw=1 \).
Obtinem ca \( f(w) \) poate fi \( w \) sau \( 1/w \).
Cu o simpla verificare se arata ca nu putem avea \( f(m)=m \) si \( f(n)=1/n \) pentru \( m,n \) diferite (si de 1).
De aici rezulta ca avem 2 functii posibile si anume: \( f(x)=x \) sau \( f(x)=1/x \), functii care evident verifica ipoteza.
Punem \( w=x=y=z \), obtinem \( \frac {2f(w)^2}{2f(w^2)}=1 \), deci \( f(w)^2=f(w^2) \) de unde \( f(1)=1 \).
Acum luam cvadrupla \( (w,1,sqrt w,sqrt w) \) si notam \( f(w)=a \), deci \( f(sqrt w)^2=a \) => \( \frac{a^2+1}{2a}=\frac{w^2+1}{2w} => a+\frac{1}{a}=w+\frac{1}{w}=>a-w=\frac{a-w}{aw} => a=w \) sau \( aw=1 \).
Obtinem ca \( f(w) \) poate fi \( w \) sau \( 1/w \).
Cu o simpla verificare se arata ca nu putem avea \( f(m)=m \) si \( f(n)=1/n \) pentru \( m,n \) diferite (si de 1).
De aici rezulta ca avem 2 functii posibile si anume: \( f(x)=x \) sau \( f(x)=1/x \), functii care evident verifica ipoteza.