Patrate de forma speciala

Moderators: Laurian Filip, Filip Chindea, maky, Cosmin Pohoata

Post Reply
User avatar
Filip Chindea
Newton
Posts: 324
Joined: Thu Sep 27, 2007 9:01 pm
Location: Bucharest

Patrate de forma speciala

Post by Filip Chindea »

Fie \( x, y \in \mathbb{N} \) cu \( xy + x + y \) patrat perfect. Sa se arate ca exista \( z \in \mathbb{N} \) astfel ca

\( yz + y + z,\ zx + z + x,\ xy + z,\ yz + x, \)
\( zx + y,\ xy + yz + zx,\ xy + yz + zx + x + y + z \)

sunt toate patrate.

[ Kvant M1799 si Teste tip OIM 2008 - Problema 2/Test 6 ]
Life is complex: it has real and imaginary components.
User avatar
Vlad Matei
Pitagora
Posts: 58
Joined: Wed Sep 26, 2007 6:44 pm
Location: Bucuresti

Post by Vlad Matei »

Ideea e ca putem lua \( z=x+y+2t+1 \) unde \( x+y+xy=t^{2} \). Prima data am pus \( z=x+y+k \) si de acolo am vazut ca merge \( k=2t+1 \). :D
Show must go on!
User avatar
Filip Chindea
Newton
Posts: 324
Joined: Thu Sep 27, 2007 9:01 pm
Location: Bucharest

Post by Filip Chindea »

Curioase identitatile astea. Ideea era ca din \( (x+1)(y+1) = t^2 + 1 \) se deduce aplicand lema asta ca \( x + 1 = a^2 + b^2,\ y + 1 = c^2 + d^2,\ t = ac + bd,\ ad - bc = 1 \) si apoi luam \( z := (a - c)^2 + (b - d)^2 \).
Life is complex: it has real and imaginary components.
Post Reply

Return to “Teoria Numerelor”