Fie \( x, y \in \mathbb{N} \) cu \( xy + x + y \) patrat perfect. Sa se arate ca exista \( z \in \mathbb{N} \) astfel ca
\( yz + y + z,\ zx + z + x,\ xy + z,\ yz + x, \)
\( zx + y,\ xy + yz + zx,\ xy + yz + zx + x + y + z \)
sunt toate patrate.
[ Kvant M1799 si Teste tip OIM 2008 - Problema 2/Test 6 ]
Patrate de forma speciala
Moderators: Laurian Filip, Filip Chindea, maky, Cosmin Pohoata
- Filip Chindea
- Newton
- Posts: 324
- Joined: Thu Sep 27, 2007 9:01 pm
- Location: Bucharest
Patrate de forma speciala
Life is complex: it has real and imaginary components.
- Vlad Matei
- Pitagora
- Posts: 58
- Joined: Wed Sep 26, 2007 6:44 pm
- Location: Bucuresti
- Filip Chindea
- Newton
- Posts: 324
- Joined: Thu Sep 27, 2007 9:01 pm
- Location: Bucharest
Curioase identitatile astea. Ideea era ca din \( (x+1)(y+1) = t^2 + 1 \) se deduce aplicand lema asta ca \( x + 1 = a^2 + b^2,\ y + 1 = c^2 + d^2,\ t = ac + bd,\ ad - bc = 1 \) si apoi luam \( z := (a - c)^2 + (b - d)^2 \).
Life is complex: it has real and imaginary components.