det(A^2+B^2)\geq det(AB-BA)

Moderators: Bogdan Posa, Laurian Filip, Beniamin Bogosel, Radu Titiu, Marius Dragoi

Post Reply
User avatar
Cezar Lupu
Site Admin
Posts: 612
Joined: Wed Sep 26, 2007 2:04 pm
Location: Bucuresti sau Constanta
Contact:

det(A^2+B^2)\geq det(AB-BA)

Post by Cezar Lupu »

Azi, la seminarul de la Institut de algebre de operatori, domnul profesor Stratila a facut o problema foarte interesanta, anume http://mateforum.ro/viewtopic.php?p=678#678
Aici am sa postez un fel de "echivalent" al problemei din link-ul de mai sus la
clasa 11-a. Iata problema:

Sa se arate ca pentru orice doua matrice \( A, B\in M_{2}(\mathbb{R}) \) are loc inegalitatea:

\( \det(A^2+B^2)\geq\det(AB-BA) \).

Cand are loc egalitatea?
Last edited by Cezar Lupu on Tue Oct 16, 2007 9:26 am, edited 1 time in total.
An infinite number of mathematicians walk into a bar. The first one orders a beer. The second orders half a beer. The third, a quarter of a beer. The bartender says “You’re all idiots”, and pours two beers.
User avatar
Cezar Lupu
Site Admin
Posts: 612
Joined: Wed Sep 26, 2007 2:04 pm
Location: Bucuresti sau Constanta
Contact:

Post by Cezar Lupu »

Totusi, hai sa dam o indicatie:
Scrieti \( (A+iB)(A-iB)=A^{2}+B^{2}+i(BA-AB) \) si \( (A-iB)(A+iB)=A^{2}+B^{2}+i(AB-BA) \), iar \( \det(A+iB)(A-iB)=\det(A-iB)(A+iB)=\det(A^{2}+B^{2}) \).
An infinite number of mathematicians walk into a bar. The first one orders a beer. The second orders half a beer. The third, a quarter of a beer. The bartender says “You’re all idiots”, and pours two beers.
User avatar
Radu Titiu
Thales
Posts: 155
Joined: Fri Sep 28, 2007 5:05 pm
Location: Mures \Bucuresti

Post by Radu Titiu »

Fie \( P(X)=\det(A^2+B^2-X(AB-BA))=aX^2+bX+c \)avand coeficientii \( a,b,c \in \mathbb{R} \), \( a=\det(AB-BA) \), \( c=\det(A^2+B^2). \)

Astfel avem:

\( \det(P(i))=\det(A+iB)\det(A-iB)=|\det(A+iB)|^2 \geq 0 \)
Deoarece \( P(i) \in \mathbb{R}_{+} \Rightarrow b=0 \) , astfel \( c-a \geq 0 \) ceea ce trebuia demonstrat.
A mathematician is a machine for turning coffee into theorems.
User avatar
Bogdan Posa
Pitagora
Posts: 77
Joined: Fri Dec 14, 2007 3:47 pm
Location: Motru , Gorj , Romania
Contact:

Post by Bogdan Posa »

frumoasa solutie Svejk...

\( \det [A^{2}+B^{2}+i(AB-BA)]+\det [A^{2}+B^{2}-i(AB-BA)] \)=
\( \det (A+iB)(A-iB)+\det (A-iB)(A+iB) \) \( \geq 0 \)
Dar
\( \det [A^{2}+B^{2}+i(AB-BA)]+\det [A^{2}+B^{2}-i(AB-BA)] \)=
\( 2 \det (A^{2}+B^{2})+2 \det [i(AB-BA)] \)=
\( 2\det (A^{2}+B^{2})-2\det (AB-BA)\geq 0 \).
Post Reply

Return to “Algebra”