Suma de combinari
Moderators: Laurian Filip, Filip Chindea, maky, Cosmin Pohoata
- Beniamin Bogosel
- Co-admin
- Posts: 710
- Joined: Fri Mar 07, 2008 12:01 am
- Location: Timisoara sau Sofronea (Arad)
- Contact:
Suma de combinari
Daca \( p \) este un numar prim mai mare decat 3 si \( k=\left[\frac{2p}{3}\right] \), demonstrati ca \( \left(\matrix{p\\ 1}\right)+\left(\matrix{p\\ 2 }\right)+ \cdots +\left(\matrix{p\\ k}\right) \) se divide cu \( p^2 \).
- Filip Chindea
- Newton
- Posts: 324
- Joined: Thu Sep 27, 2007 9:01 pm
- Location: Bucharest
Hint. Utilizati implicatiile simple \( j \in \overline{1, p - 1} \Rightarrow p | {p \choose j} \), iar pentru \( b | a \), \( p \) nu divide \( b \), rezulta \( \frac{a}{b} \equiv ab^{-1} \pmod{p} \).
Pentru o solutie completa, vezi Gica & Panaitopol (ed. Gil).
Pentru o solutie completa, vezi Gica & Panaitopol (ed. Gil).
Life is complex: it has real and imaginary components.