Suma de combinari

Moderators: Laurian Filip, Filip Chindea, maky, Cosmin Pohoata

Post Reply
User avatar
Beniamin Bogosel
Co-admin
Posts: 710
Joined: Fri Mar 07, 2008 12:01 am
Location: Timisoara sau Sofronea (Arad)
Contact:

Suma de combinari

Post by Beniamin Bogosel »

Daca \( p \) este un numar prim mai mare decat 3 si \( k=\left[\frac{2p}{3}\right] \), demonstrati ca \( \left(\matrix{p\\ 1}\right)+\left(\matrix{p\\ 2 }\right)+ \cdots +\left(\matrix{p\\ k}\right) \) se divide cu \( p^2 \).
User avatar
Filip Chindea
Newton
Posts: 324
Joined: Thu Sep 27, 2007 9:01 pm
Location: Bucharest

Post by Filip Chindea »

Hint. Utilizati implicatiile simple \( j \in \overline{1, p - 1} \Rightarrow p | {p \choose j} \), iar pentru \( b | a \), \( p \) nu divide \( b \), rezulta \( \frac{a}{b} \equiv ab^{-1} \pmod{p} \).

Pentru o solutie completa, vezi Gica & Panaitopol (ed. Gil).
Life is complex: it has real and imaginary components.
Post Reply

Return to “Teoria Numerelor”