Fie \( n \in \mathbb{N},\ n \ge 2 \).
a) Pentru \( n = 3 \), aratati ca
\( \sum \sqrt{\frac{2x_j}{x_j + x_{j+1}}} \le n \)
are loc, oricare ar fi \( x_1,\ x_2,\ x_3 > 0 \).
b) (personala) Pentru ce \( n \) ramane adevarata inegalitatea, oricare ar fi \( x_j \) pozitive?
Vasc si MLS
Moderators: Laurian Filip, Filip Chindea, Radu Titiu, maky, Cosmin Pohoata
- Filip Chindea
- Newton
- Posts: 324
- Joined: Thu Sep 27, 2007 9:01 pm
- Location: Bucharest
Vasc si MLS
Last edited by Filip Chindea on Sun Jun 08, 2008 7:07 pm, edited 2 times in total.
Life is complex: it has real and imaginary components.
-
Marius Mainea
- Gauss
- Posts: 1077
- Joined: Mon May 26, 2008 2:12 pm
- Location: Gaesti (Dambovita)
- Filip Chindea
- Newton
- Posts: 324
- Joined: Thu Sep 27, 2007 9:01 pm
- Location: Bucharest