Vasc si MLS

Moderators: Laurian Filip, Filip Chindea, Radu Titiu, maky, Cosmin Pohoata

Post Reply
User avatar
Filip Chindea
Newton
Posts: 324
Joined: Thu Sep 27, 2007 9:01 pm
Location: Bucharest

Vasc si MLS

Post by Filip Chindea »

Fie \( n \in \mathbb{N},\ n \ge 2 \).

a) Pentru \( n = 3 \), aratati ca

\( \sum \sqrt{\frac{2x_j}{x_j + x_{j+1}}} \le n \)

are loc, oricare ar fi \( x_1,\ x_2,\ x_3 > 0 \).

b) (personala) Pentru ce \( n \) ramane adevarata inegalitatea, oricare ar fi \( x_j \) pozitive?
Last edited by Filip Chindea on Sun Jun 08, 2008 7:07 pm, edited 2 times in total.
Life is complex: it has real and imaginary components.
Marius Mainea
Gauss
Posts: 1077
Joined: Mon May 26, 2008 2:12 pm
Location: Gaesti (Dambovita)

Post by Marius Mainea »

Este o problema propusa de Vasile Cartoaje in GM 7-8/1992.
User avatar
Filip Chindea
Newton
Posts: 324
Joined: Thu Sep 27, 2007 9:01 pm
Location: Bucharest

Post by Filip Chindea »

In sfârsit, importanta este ideea de solutionare. Poate pentru trei variabile este simplu, dar cazul general nu mai este tot atât de usor (de fapt, problema nu mai este adevarata de la un anumit \( n \) mai departe).
Life is complex: it has real and imaginary components.
Post Reply

Return to “Inegalitati”