Determinanti pozitivi

Moderators: Bogdan Posa, Laurian Filip, Beniamin Bogosel, Radu Titiu, Marius Dragoi

Post Reply
User avatar
Cezar Lupu
Site Admin
Posts: 612
Joined: Wed Sep 26, 2007 2:04 pm
Location: Bucuresti sau Constanta
Contact:

Determinanti pozitivi

Post by Cezar Lupu »

Fie \( A\in M_{n}(\mathbb{R}) \) o matrice astfel incat \( A^{2}=O_{n} \). Sa se arate ca \( \det(A+I_{n})\geq 0 \).
An infinite number of mathematicians walk into a bar. The first one orders a beer. The second orders half a beer. The third, a quarter of a beer. The bartender says “You’re all idiots”, and pours two beers.
User avatar
Alin Galatan
Site Admin
Posts: 247
Joined: Tue Sep 25, 2007 9:24 pm
Location: Bucuresti/Timisoara/Moldova Noua

Post by Alin Galatan »

Ideea mea este de a arata ca determinantul e 1 (fara a folosi notiunea de polinom minimal).

\( A^2=O\Rightarrow \) 0 este unica valoarea proprie a lui A. Deci polinomul caracteristic este det\( (A-XI_n)=(-1)^nX^n \). Deci det\( (A+I_n)=(-1)^{2n}=1 \).
Last edited by Alin Galatan on Sat Oct 06, 2007 12:12 pm, edited 1 time in total.
User avatar
harq
Arhimede
Posts: 5
Joined: Wed Sep 26, 2007 10:51 pm
Location: Timisoara

Post by harq »

\( \det (A+I) =\det(A^2+A+I)= \det(A-\epsilon I) \det( A- \epsilon^2 I)= \) \( \det(A-\epsilon I) \overline{\det(A-\epsilon I)}= |\det (A-\epsilon I)| ^2\geq 0 \)
User avatar
Cezar Lupu
Site Admin
Posts: 612
Joined: Wed Sep 26, 2007 2:04 pm
Location: Bucuresti sau Constanta
Contact:

Post by Cezar Lupu »

\( \left(\frac{1}{2}A+I_n\right)^{2}=A+I_{n} \), trecem la determinanti si gata.
An infinite number of mathematicians walk into a bar. The first one orders a beer. The second orders half a beer. The third, a quarter of a beer. The bartender says “You’re all idiots”, and pours two beers.
Post Reply

Return to “Algebra”