Problema 2 ONM 2008

Moderators: Bogdan Posa, Laurian Filip, Beniamin Bogosel, Radu Titiu, Marius Dragoi

Post Reply
User avatar
Radu Titiu
Thales
Posts: 155
Joined: Fri Sep 28, 2007 5:05 pm
Location: Mures \Bucuresti

Problema 2 ONM 2008

Post by Radu Titiu »

Demonstrati ca o matrice inversabila \( A\in \mathcal{M}_n(\mathbb{C}) \) are proprietatea \( A^{-1}=\overline{A} \) daca si numai daca exista o matrice inversabila \( B \in \mathcal{M}_n(\mathbb{C}) \) a.i. \( A=B^{-1}\cdot \overline{B} \) (matricea \( \overline{A} \) este matricea A cu elementele complex conjugate )


Vasile Pop, ONM 2008; Moubinool Omarjee, IMC 2002 (detalii aici)
A mathematician is a machine for turning coffee into theorems.
Post Reply

Return to “Algebra”