Concurs "Teodor Topan" - problema 1

Moderators: Bogdan Posa, Laurian Filip

Post Reply
User avatar
maky
Pitagora
Posts: 80
Joined: Thu Sep 27, 2007 7:15 pm
Location: bucuresti

Concurs "Teodor Topan" - problema 1

Post by maky »

Calculati:
a) \( 2008\cdot2007-2006\cdot2007-2\cdot2006 \);
b) \( \left(3^{2011}:3^5+5^{59}\cdot5^7\right):\left[2^7\cdot2^3+\left(3^{1003}\right)^2+5^{66}-2^{10}\right] \)
Chis Maria, Simleul Silvaniei
deleter
Euclid
Posts: 11
Joined: Thu Mar 20, 2008 7:13 pm
Location: Bucuresti

Post by deleter »

a)\( 2007\cdot(2008-2006)-2\cdot2006 \)\( = \)\( 2\cdot(2007-2006) \) \( = \) \( 2 \)
deleter
Euclid
Posts: 11
Joined: Thu Mar 20, 2008 7:13 pm
Location: Bucuresti

Post by deleter »

b) \( (3^{2011}:3^{5}+5^{59}\cdot 5^{7}): \)\( (2^{10}+3^{2006}+5^{66}-2^{10})=(3^{2006}+5^{66}): \)\( (3^{2006}+5^{66})=1 \)
Post Reply

Return to “Clasa a V-a”