Matrice inversabila

Moderators: Bogdan Posa, Laurian Filip, Beniamin Bogosel, Radu Titiu, Marius Dragoi

Post Reply
User avatar
Marius Dragoi
Thales
Posts: 126
Joined: Thu Jan 31, 2008 5:57 pm
Location: Bucharest

Matrice inversabila

Post by Marius Dragoi »

Fie \( B={(b_{ij})}_{1 \leq i,j \leq n} \in M_n(R) \) , unde \( b_{ij}=p_i p_j , 1 \leq i,j \leq n \) cu \( p_1,...,p_n \in R \). Demonstrati ca matricea \( A=B+I_n \) este inversabila si aflati inversa sa.

Alexandru Lupas
Politehnica University of Bucharest
The Faculty of Automatic Control and Computers
User avatar
Alin Galatan
Site Admin
Posts: 247
Joined: Tue Sep 25, 2007 9:24 pm
Location: Bucuresti/Timisoara/Moldova Noua

Post by Alin Galatan »

Se observa ca \( B = x \cdot ^tx \), unde \( x \) este vector coloana, \( x_i = p_i \). Deci \( B+I_n = x\cdot ^tx + I_n \).
Voi cauta inversa sa fie ceva de forma \( ax^tx+I_n \). (Motivul? Seamana f. mult cu o matrice Householder, care e simetrica si ortogonala. Insa aici nu e, asa ca sunt nevoit sa o corijez cu factorul a, pe care il voi cauta.)
Vrem deci ca \( (x^tx + I_n)(ax^tx+I_n)=I_n \).
Deci \( ax\cdot ^tx\cdot x \cdot ^tx+x\cdot ^tx+ax\cdot ^tx=0 \).
Asociem, \( ax\cdot (^tx\cdot x) \cdot ^tx+x\cdot ^tx+ax\cdot ^tx=0 \).
Intrucat \( ^tx\cdot x = \tr(B) \), obtinem ca daca exista \( a \) astfel ca \( a\cdot \tr(B)+a+1=0 \), problema e gata.
Evident, exista.
Deci e inversabila, cu inversa \( -\frac{1}{1+\tr(B)}B+I_n \).
Post Reply

Return to “Algebra”