Concursul "Teodor Topan" - problema 2

Moderators: Bogdan Posa, Laurian Filip

Post Reply
User avatar
maky
Pitagora
Posts: 80
Joined: Thu Sep 27, 2007 7:15 pm
Location: bucuresti

Concursul "Teodor Topan" - problema 2

Post by maky »

2. Aratati ca \( N=2002^n+2003^n+2007^n+2008^n \) se divide cu \( 5 \), oricare ar fi numarul natural impar \( n \).

Gornoava Valeriu, Zalau
mihai++
Bernoulli
Posts: 206
Joined: Wed Nov 28, 2007 8:08 pm
Location: Focsani

Post by mihai++ »

\( N=4005*(\dots)+4015*(\dots)\rightarrow N \vdots 5 \)
n-ar fi rau sa fie bine :)
User avatar
Marius Dragoi
Thales
Posts: 126
Joined: Thu Jan 31, 2008 5:57 pm
Location: Bucharest

Post by Marius Dragoi »

Fie \( n=2k+1 \)
\( 2002\equiv -3 (mod 5) \) \( \Rightarrow \) \( 2002^{2k+1}\equiv (-3)^{2k+1} (mod 5) \) \( \Rightarrow \) \( 2002^{2k+1}\equiv -3^{2k+1}(mod 5) \)
Analog otinem: \( 2003^{2k+1}\equiv -2^{2k+1} (mod 5) , 2007^{2k+1}\equiv 2^{2k+1} (mod 5) \) si \( 2008^{2k+1}\equiv 3^{2k+1} (mod 5) \)
Sumand obtinem: \( N\equiv 0 (mod 5) \)
Politehnica University of Bucharest
The Faculty of Automatic Control and Computers
Virgil Nicula
Euler
Posts: 622
Joined: Fri Sep 28, 2007 11:23 pm

Re: Concursul "Teodor Topan" - problema 2

Post by Virgil Nicula »

2. Fie cifrele (in baza \( 10 \) ) \( a \) , \( b \) , \( c \) , \( d \) pentru care \( a+d=b+c=10 \) . Aratati ca numarul

\( N=\overline {200a}^n+\overline {200b}^n+\overline {200c}^n+\overline {200d}^n \) se divide cu \( 10 \), pentru orice numar natural impar \( n \) .

Gornoava Valeriu, Zalau
mihai++
Bernoulli
Posts: 206
Joined: Wed Nov 28, 2007 8:08 pm
Location: Focsani

Post by mihai++ »

\( N=4010*(\dots)\rightarrow N\vdots10. \)
n-ar fi rau sa fie bine :)
Post Reply

Return to “Clasa a VI-a”