Proprietate interesanta a corpurilor finite

Moderators: Bogdan Posa, Beniamin Bogosel, Marius Dragoi

Post Reply
User avatar
Alex Dura
Site Admin
Posts: 25
Joined: Tue Sep 25, 2007 9:18 pm
Location: Timisoara

Proprietate interesanta a corpurilor finite

Post by Alex Dura »

Demonstrati ca orice element dintr-un corp finit F este suma a doua patrate din F.
User avatar
Alin Galatan
Site Admin
Posts: 247
Joined: Tue Sep 25, 2007 9:24 pm
Location: Bucuresti/Timisoara/Moldova Noua

Post by Alin Galatan »

Fie \( n=|K| \).
Daca \( char K\neq 2 \), fie \( A=\{x^2| x\in K\} \). Intrucat \( x^2=y^2 \)echivalent cu \( x=y \) sau \( x=-y \), obtinem ca orice multime de 2 elemente \( \{x,-x\} \) cu \( x\neq 0 \) are aceeasi imagine prin functia \( x\to x^2 \). In concluzie, multimea A are \( \frac{n-1}{2}+1>\frac{n}{2} \) elemente. (Am adaugat si \( 0^2 \).)
Fie \( a\in K \) un element arbitrar. Fie \( f:A\to K \), \( f(x)=a-x \). Evident, e injectiva, deci \( |Imf|>\frac{n}{2} \). Insa intrucat A si Imf au ambele mai mult de \( \frac{n}{2} \) elemente, intersectia lor nu e vida. Deci exista \( u\in A\cap Imf \) deci un \( v\in A \) astfel ca \( f(v)=u\Rightarrow a-v=u\Rightarrow a=u+v \)
Daca charK=2, atunci \( x\to x^2 \) e injectiva, deci surjectiva, si atunci orice element e patrat perfect, fiind suma dintre el si \( 0^2 \).
Post Reply

Return to “Algebra”