Inegalitate cu module de numere complexe

Moderators: Filip Chindea, Andrei Velicu, Radu Titiu

Post Reply
Andrei Velicu
Euclid
Posts: 27
Joined: Wed Oct 17, 2007 9:20 am
Location: Constanta

Inegalitate cu module de numere complexe

Post by Andrei Velicu »

Fie \( a, b \) doua numere complexe. Sa se demonstreze ca \( |1+ab|+|a+b|\geq \sqrt{|a^2-1|\cdot|b^2-1|} \).

***, Olimpiada judeteana 2008
User avatar
Beniamin Bogosel
Co-admin
Posts: 710
Joined: Fri Mar 07, 2008 12:01 am
Location: Timisoara sau Sofronea (Arad)
Contact:

Post by Beniamin Bogosel »

Problema e chiar simpla, desi nu m-am prins din prima:
\( |1+ab|+|a+b|=\frac{|1+ab|+|a+b|+|1+ab|+|-a-b|}{2}\geq \frac{|(a+1)(b+1)|+|(a-1)(b-1)|}{2}\geq \sqrt{|a^2-1||b^2-1|} \).

Am aplicat medii o data si inegalitatea modulului de 2 ori :)
Yesterday is history,
Tomorow is a mistery,
But today is a gift.
That's why it's called present. :)

Blog
Post Reply

Return to “Clasa a X-a”