Fie matricea \( A\in M_{n}(\mathbb{C}) \), \( n\in\mathbb{N}^{*} \), cu proprietatea ca \( \det(I_{n}+A^{k})=1 \) pentru orice \( k\in\mathbb{N}^{*} \). Sa se arate ca \( A^{n}=0 \).
Marius Cavachi, Gazeta Matematica 2007
Matrice de ordin n cu A^n=0
Moderators: Bogdan Posa, Laurian Filip, Beniamin Bogosel, Radu Titiu, Marius Dragoi
- Cezar Lupu
- Site Admin
- Posts: 612
- Joined: Wed Sep 26, 2007 2:04 pm
- Location: Bucuresti sau Constanta
- Contact:
Matrice de ordin n cu A^n=0
An infinite number of mathematicians walk into a bar. The first one orders a beer. The second orders half a beer. The third, a quarter of a beer. The bartender says “You’re all idiots”, and pours two beers.
- Bogdan Posa
- Pitagora
- Posts: 77
- Joined: Fri Dec 14, 2007 3:47 pm
- Location: Motru , Gorj , Romania
- Contact:
Fie \( a_{1}, a_{2}, \dots, a_{n} \) valorile proprii ale matricei A. Din ipoteza avem relatia \( (1+a_{1}^k)(1+a_{2}^k)\cdots (1+a_{n}^k)=1 \) pentru orice k numar natural.
Din aceasta relatie trebuie sa obtinem ca \( a_{1}=a_{2}=\dots =a_{n}=0 \), dar nu stiu cum
.
P.S. Problema apare si la http://www.mateforum.ro/viewtopic.php?t=1060
Din aceasta relatie trebuie sa obtinem ca \( a_{1}=a_{2}=\dots =a_{n}=0 \), dar nu stiu cum
P.S. Problema apare si la http://www.mateforum.ro/viewtopic.php?t=1060