Aratati ca in orice triunghi ascutitunghic are loc inegalitatea
\( 2[(a-b)^2+(b-c)^2+(c-a)^2]\geq a^2+b^2+c^2-4\sqrt{3}S \)
Mihai Opincariu
Complementara a inegalitatii Finsler-Hadwiger
Moderators: Filip Chindea, Andrei Velicu, Radu Titiu
-
opincariumihai
- Thales
- Posts: 134
- Joined: Sat May 09, 2009 7:45 pm
- Location: BRAD
- Mateescu Constantin
- Newton
- Posts: 307
- Joined: Tue Apr 21, 2009 8:17 am
- Location: Pitesti
Inegalitatea se scrie : \( 4(a^2+b^2+c^2)-4(ab+bc+ca)\ge a^2+b^2+c^2-4S\sqrt 3\ \Longleftrightarrow\ 3(\underline{a^2+b^2+c^2})+4S\sqrt 3\ge 4(\underline{\underline{ab+bc+ca}}) \)
\( \Longleftrightarrow\ 3(\underline{2p^2-8Rr-2r^2})+4S\sqrt 3\ge 4(\underline{\underline{p^2+r^2+4Rr}})\ \Longleftrightarrow\ \underline{\overline{\left\|\ p^2+2S\sqrt 3\ge 20Rr+5r^2\ \right\|}} \).
Din inegalitatea Gerretsen \( p^2\ge 16Rr-5r^2\ \Longrightarrow\ p^2+2S\sqrt 3\ge 16Rr-5r^2+2S\sqrt 3 \). Asadar, ramane sa aratam numai ca
\( 16Rr-5r^2+2S\sqrt 3\ge 20Rr+5r^2\ \Longleftrightarrow\ S\sqrt 3\ge 2Rr+5r^2\ \Longleftrightarrow^{S=rp}\ p\sqrt 3\ge 2R+5r \ \Longleftrightarrow\ 3p^2\ge 4R^2+20Rr+25r^2 \).
Dar, din inegalitatea Walker in triunghi ascutitunghic \( p^2\ge 2R^2+8Rr+3r^2\ \Longrightarrow\ 3p^2\ge 6R^2+24Rr+9r^2 \).
Deci este de ajuns sa demonstram ca \( 6R^2+24Rr+9r^2\ge 4R^2+20Rr+25r^2\ \Longleftrightarrow\ R^2+2Rr-8r^2\ge 0 \)
\( \Longleftrightarrow\ (R-2r)(R+4r)\ge 0\ ,\ \mbox{\normal OK} \)
\( \Longleftrightarrow\ 3(\underline{2p^2-8Rr-2r^2})+4S\sqrt 3\ge 4(\underline{\underline{p^2+r^2+4Rr}})\ \Longleftrightarrow\ \underline{\overline{\left\|\ p^2+2S\sqrt 3\ge 20Rr+5r^2\ \right\|}} \).
Din inegalitatea Gerretsen \( p^2\ge 16Rr-5r^2\ \Longrightarrow\ p^2+2S\sqrt 3\ge 16Rr-5r^2+2S\sqrt 3 \). Asadar, ramane sa aratam numai ca
\( 16Rr-5r^2+2S\sqrt 3\ge 20Rr+5r^2\ \Longleftrightarrow\ S\sqrt 3\ge 2Rr+5r^2\ \Longleftrightarrow^{S=rp}\ p\sqrt 3\ge 2R+5r \ \Longleftrightarrow\ 3p^2\ge 4R^2+20Rr+25r^2 \).
Dar, din inegalitatea Walker in triunghi ascutitunghic \( p^2\ge 2R^2+8Rr+3r^2\ \Longrightarrow\ 3p^2\ge 6R^2+24Rr+9r^2 \).
Deci este de ajuns sa demonstram ca \( 6R^2+24Rr+9r^2\ge 4R^2+20Rr+25r^2\ \Longleftrightarrow\ R^2+2Rr-8r^2\ge 0 \)
\( \Longleftrightarrow\ (R-2r)(R+4r)\ge 0\ ,\ \mbox{\normal OK} \)
- Cezar Lupu
- Site Admin
- Posts: 612
- Joined: Wed Sep 26, 2007 2:04 pm
- Location: Bucuresti sau Constanta
- Contact:
Re: Complementara a inegalitatii Finsler-Hadwiger
Draga Mihai, imi pare rau sa te anunt, insa aceasta inegalitate figureaza intr-un articol elementar impreuna cu Vlad Matei pe care l-am trimis la o revista in afara acum ceva vreme. Pe de alta parte, trebuie sa-ti marturisesc ca nu am vazut pana acum acest topic. Ea poate fi vazuta ca fiind o rafinare a reversului inegalitatii Finsler-Hadwiger. Reversul inegalitatii Finsler-Hadwiger este urmatorul:opincariumihai wrote:Aratati ca in orice triunghi ascutitunghic are loc inegalitatea
\( 2[(a-b)^2+(b-c)^2+(c-a)^2]\geq a^2+b^2+c^2-4\sqrt{3}S \)
Mihai Opincariu
In orice triunghi \( ABC \) de laturi \( a, b, c \) are loc inegalitatea:
\( a^2+b^2+c^2\leq 4S\sqrt{3}+3[(a-b)^2+(b-c)^2+(c-a)^2]. \)
Rafinarea consta in faptul ca in loc de \( 3 \) putem pune \( 2 \), insa valabilitatea inegalitii va fi doar in cazul triunghlui ascutitunghic. Demonstratia noastra face apel la inegalitatea lui Popoviciu pentru functia \( \operatorname{ctg}x \). Demonstratia data aici de Constantin Mateescu este foarte draguta.
P.S. Vezi aici.
An infinite number of mathematicians walk into a bar. The first one orders a beer. The second orders half a beer. The third, a quarter of a beer. The bartender says “You’re all idiots”, and pours two beers.
- Mateescu Constantin
- Newton
- Posts: 307
- Joined: Tue Apr 21, 2009 8:17 am
- Location: Pitesti