Fie \( ABC \) un triunghi si \( D, E, F \) mijloacele laturilor \( BC, CA, AB \) respectiv.
Sa se arate ca \( \angle{DAC}=\angle{ABE} \) daca si numai daca \( \angle{AFC}=\angle{BDA} \) .
JBTST V 2010, Problema 2
Moderators: Laurian Filip, Filip Chindea, maky, Cosmin Pohoata, Virgil Nicula
- Andi Brojbeanu
- Bernoulli
- Posts: 294
- Joined: Sun Mar 22, 2009 6:31 pm
- Location: Targoviste (Dambovita)
JBTST V 2010, Problema 2
FF simpla !
Last edited by Andi Brojbeanu on Mon May 24, 2010 8:39 pm, edited 1 time in total.
Andi Brojbeanu
profesor, Liceul Teoretic "Lucian Blaga", Cluj-Napoca
profesor, Liceul Teoretic "Lucian Blaga", Cluj-Napoca
-
Claudiu Mindrila
- Fermat
- Posts: 520
- Joined: Mon Oct 01, 2007 2:25 pm
- Location: Targoviste
- Contact:
Intai \( DF\parallel AC\Longrightarrow\widehat{ADF}=\widehat{DAC} \). Fie \( G \) centrul de greutate al triunghiului \( ABC \).
Acum,
\( \widehat{DAC}=\widehat{ABE}\Longleftrightarrow\widehat{ABE}=\widehat{ADF}\Longleftrightarrow\widehat{FBG}=\widehat{FDG}\Longleftrightarrow BDFG\ \text{inscriptibil}\Longleftrightarrow\widehat{AFC}=\widehat{BDA} \)
Acum,
\( \widehat{DAC}=\widehat{ABE}\Longleftrightarrow\widehat{ABE}=\widehat{ADF}\Longleftrightarrow\widehat{FBG}=\widehat{FDG}\Longleftrightarrow BDFG\ \text{inscriptibil}\Longleftrightarrow\widehat{AFC}=\widehat{BDA} \)
elev, clasa a X-a, C. N. "C-tin Carabella", Targoviste
-
Virgil Nicula
- Euler
- Posts: 622
- Joined: Fri Sep 28, 2007 11:23 pm
Observatii.Fie \( ABC \) un triunghi si \( D, E, F \) mijloacele laturilor \( BC, CA, AB \) respectiv.
Sa se arate ca \( \angle{DAC}=\angle{ABE} \) daca si numai daca \( \angle{AFC}=\angle{BDA} \) .
1 - \( \ \widehat{DAC}\equiv\widehat{ABE}\ \Longleftrightarrow\ \widehat{AFC}\equiv\widehat{BDA}\ \Longleftrightarrow\ a^2+c^2=2b^2 \) .
2 - Fie \( ABC \) un triunghi si mijlocul \( E \) al laturii \( CA \) . Pentru un punct \( M\in (BE) \) notam \( D\in AM\cap BC \) si \( F\in CM\cap AB \) .
Sa se arate ca \( \angle{DAC}=\angle{ABE}\ \Longleftrightarrow\ \angle{AFC}=\angle{BDA}\ \Longleftrightarrow\ (1-2m)(a^2+c^2)=(1-m)b^2 \) , unde \( MD=m\cdot AD \) .