Fie \( x_n \) \( n \in N \)un sir de numere reale cu \( x_0=1 \), \( x_{670}=0, x_{n+1}=2x_1x_n-x_{n-1} \) oricare ar fi \( n \geq 1 \)
a) Calculati \( x_{2010} \)
b) Sirul \( x_n \)are limita?
Multumesc
sir
Moderators: Bogdan Posa, Laurian Filip, Beniamin Bogosel, Radu Titiu, Marius Dragoi
Din \( x_{n+1}-2x_1x_n+x_{n-1}=0 \) avem \( x_n=au^n+bv^n \) cu \( u,v \) solutiile ecuatiei \( t^2-2x_1t+1=0 \), daca \( x_1\neq1 \) si \( x_n=a+nb \), daca \( x_1=1 \).
Astfel ca in primu caz:
\( x_0=1 \rightarrow a+b=1\\
x_{670}=0\rightarrow au^{670}+bv^{670}=0 \rightarrow a=\frac{v^{670}}{v^{670}-u^{670}},b=\frac{-u^{670}}{v^{670}-u^{670}) \).
Si de aici \( x_{2010}=\frac{(uv)^{670}}{v^{670}-u^{670}}\cdot(u^{2\cdot 670}-v^{2\cdot 670})=-(u^{670}+v^{670}) \)
Al doilea caz se trateaza asemanator.
Astfel ca in primu caz:
\( x_0=1 \rightarrow a+b=1\\
x_{670}=0\rightarrow au^{670}+bv^{670}=0 \rightarrow a=\frac{v^{670}}{v^{670}-u^{670}},b=\frac{-u^{670}}{v^{670}-u^{670}) \).
Si de aici \( x_{2010}=\frac{(uv)^{670}}{v^{670}-u^{670}}\cdot(u^{2\cdot 670}-v^{2\cdot 670})=-(u^{670}+v^{670}) \)
Al doilea caz se trateaza asemanator.
n-ar fi rau sa fie bine 
-
andy crisan
- Pitagora
- Posts: 56
- Joined: Sun Dec 28, 2008 5:50 pm
- Location: Pitesti
-
andy crisan
- Pitagora
- Posts: 56
- Joined: Sun Dec 28, 2008 5:50 pm
- Location: Pitesti