matrice

Moderators: Bogdan Posa, Laurian Filip, Beniamin Bogosel, Radu Titiu, Marius Dragoi

Post Reply
User avatar
elena_romina
Euclid
Posts: 40
Joined: Sat Nov 15, 2008 12:15 pm

matrice

Post by elena_romina »

Image
Multumesc :D
Last edited by elena_romina on Fri Mar 05, 2010 11:27 am, edited 1 time in total.
Marius Mainea
Gauss
Posts: 1077
Joined: Mon May 26, 2008 2:12 pm
Location: Gaesti (Dambovita)

Post by Marius Mainea »

\( A_n=\left(\begin{array}{cc}\alpha_1^n&\alpha_2^n&\alpha_1^n\\\alpha_1^{n+1}&\alpha_2^{n+1}&\alpha_3^{n+1}\\\alpha_1^{n+2}&\alpha_2^{n+2}&\alpha_3^{n+2}\end{array}\right)\cdot\left(\begin{array}{cc}\alpha_1^2&\alpha_1&1\\\alpha_2^2&\alpha_2&1\\\alpha_3^2&\alpha_3&1\end{array}\right) \)
Last edited by Marius Mainea on Fri Mar 05, 2010 12:06 am, edited 1 time in total.
User avatar
Beniamin Bogosel
Co-admin
Posts: 710
Joined: Fri Mar 07, 2008 12:01 am
Location: Timisoara sau Sofronea (Arad)
Contact:

Post by Beniamin Bogosel »

Daca scriem ecuatia care are ca radacini cele trei numere \( \alpha_i \) de exemplu \( x^3+ax^2+bx+c=0 \), atunci exista relatia de recurenta \( T_{n+3}+aT_{n+2}+bT_{n+1}+cT_n=0 \). Adunand la prima coloana pe a doua inmultita cu \( a \) si pe a treia inmultita cu \( b \) obtinem \( \det(A_n)=(-c)\det(A_{n-1}) \). Astfel problema se poate reduce la calcularea lui \( \det(A_1) \) ceea ce este mult mai simplu. :)
Yesterday is history,
Tomorow is a mistery,
But today is a gift.
That's why it's called present. :)

Blog
Post Reply

Return to “Algebra”