Recurenta liniara neobisnuita implica periodicitate

Moderators: Filip Chindea, maky, Cosmin Pohoata

Post Reply
User avatar
Filip Chindea
Newton
Posts: 324
Joined: Thu Sep 27, 2007 9:01 pm
Location: Bucharest

Recurenta liniara neobisnuita implica periodicitate

Post by Filip Chindea »

Fie \( (a_n)_{n \ge 0} \) un sir de numere reale cu proprietatea ca

\( a_{n+1} + a_{n-1} = |a_n| \), \( \forall n \ge 1 \).

Demonstrati ca sirul este periodic.

Concursul "La Scoala cu Ceas", 2008, Problema 4
Life is complex: it has real and imaginary components.
User avatar
Cezar Lupu
Site Admin
Posts: 612
Joined: Wed Sep 26, 2007 2:04 pm
Location: Bucuresti sau Constanta
Contact:

Post by Cezar Lupu »

O mica remarca as avea de facut. Am vazut ca problema a fost semnata de cineva, insa ea figureaza ca problema 6439, vol. 92, 1985 AMM sub numele a doi propunatori: M. Brown si J. F. Slifker.
An infinite number of mathematicians walk into a bar. The first one orders a beer. The second orders half a beer. The third, a quarter of a beer. The bartender says “You’re all idiots”, and pours two beers.
Virgil Nicula
Euler
Posts: 622
Joined: Fri Sep 28, 2007 11:23 pm

Post by Virgil Nicula »

Problema propusa imi aminteste de urmatoarea frumoasa problema a lui Fl. Vulpescu-Jalea, Bucuresti :
Sa se cerceteze natura sirului definit recurent \( x_1>0\ ,\ x_{n+1}=\left|x_n-n\right|\ ,\ n\in \mathbb N^* \) si sa se determine \( \lim_{n\to\infty}\ \frac {x_n}{n} \) .
Post Reply

Return to “Algebra”