Demonstrati ca daca x,y,z sunt pozitive atunci
\( \frac{x^2+xy+y^2}{y+z}+\frac{y^2+yz+z^2}{z+x}+\frac{z^2+zx+x^2}{x+y}\ge \frac{3}{2}(x+y+z) \)
OLM,2010-Dambovita
OLM -DB/2010
Moderators: Bogdan Posa, Laurian Filip
-
Marius Mainea
- Gauss
- Posts: 1077
- Joined: Mon May 26, 2008 2:12 pm
- Location: Gaesti (Dambovita)
-
Robert_Samoilescu95
- Arhimede
- Posts: 7
- Joined: Sat Jan 02, 2010 8:14 pm
- Andi Brojbeanu
- Bernoulli
- Posts: 294
- Joined: Sun Mar 22, 2009 6:31 pm
- Location: Targoviste (Dambovita)
\( 2LHS=\sum{\frac{2(x^2+xy+y^2)}{y+z}}=\sum{\frac{(x+y)^2}{y+z}}+\sum{\frac{x^2}{y+z}}+\sum{\frac{y^2}{y+z}}\ge \frac{(x+y+y+z+z+x)^2}{y+z+z+x+x+y}+\frac{(x+y+z)^2}{y+z+z+x+x+y}+\frac{(y+z+x)^2}{y+z+z+x+x+y}= \)
\( =\frac{4(x+y+z)^2}{2(x+y+z)}+\frac{(x+y+z)^2}{2(x+y+z)}+\frac{(x+y+z)^2}{2(x+y+z)}=\frac{6(x+y+z)^2}{2(x+y+z)}=3(x+y+z)=2RHS \)
\( =\frac{4(x+y+z)^2}{2(x+y+z)}+\frac{(x+y+z)^2}{2(x+y+z)}+\frac{(x+y+z)^2}{2(x+y+z)}=\frac{6(x+y+z)^2}{2(x+y+z)}=3(x+y+z)=2RHS \)