Concursul "Teodor Topan" - problema 2

Moderators: Bogdan Posa, Laurian Filip

Post Reply
User avatar
maky
Pitagora
Posts: 80
Joined: Thu Sep 27, 2007 7:15 pm
Location: bucuresti

Concursul "Teodor Topan" - problema 2

Post by maky »

Sa se afle \( x,y,z \) stiind ca: \( \frac{x}{1}=\frac{y^2}{8}=\frac{z^3}{4} \)si \( x\cdot{y}\cdot{z}=16 \)
Radu Florica, Simleu Silvaniei
User avatar
Marius Dragoi
Thales
Posts: 126
Joined: Thu Jan 31, 2008 5:57 pm
Location: Bucharest

Post by Marius Dragoi »

Observam ca \( x \) si \( z \) sunt pozitive.
\( z=2^{\frac{2}{3}} x^{\frac{1}{3}} \) , \( y=2^{\frac{3}{2}} x^{\frac{1}{2}} \)
Din \( x y z=16 \) si relatiile precedente obtinem: \( 2^{\frac{2}{3}+\frac{3}{2}} x ^{1+\frac{1}{2}+\frac{1}{3}}=16 \)

\( \Rightarrow \) \( x=2 \) \( \Rightarrow \) \( z=2 \) si \( y=4 \)
Politehnica University of Bucharest
The Faculty of Automatic Control and Computers
Post Reply

Return to “Clasa a VII-a”