O inegalitate a lui S. Radulescu & I.V. Maftei.

Moderators: Laurian Filip, Beniamin Bogosel, Filip Chindea

Post Reply
Virgil Nicula
Euler
Posts: 622
Joined: Fri Sep 28, 2007 11:23 pm

O inegalitate a lui S. Radulescu & I.V. Maftei.

Post by Virgil Nicula »

Daca \( ABC \) este un triunghi ascutitunghic, atunci \( \sum{\sqrt{\frac{b+c-a}{a}}}\ge 3. \)

Sorin mi-a spus ca se face cu metoda multiplicatorilor Lagrange la care am ramas "masca" si de aceea am propus-o. Eu am facut-o cu multiplicatori Lagrange. Insa sunt convins ca exista si o metoda elementara.
Last edited by Virgil Nicula on Tue Feb 02, 2010 6:40 pm, edited 2 times in total.
User avatar
Mateescu Constantin
Newton
Posts: 307
Joined: Tue Apr 21, 2009 8:17 am
Location: Pitesti

Post by Mateescu Constantin »

Mai intai sa demonstram ca intr-un triunghi ascutitunghic \( ABC \) avem inegalitatea:

\( \overline{\underline{\left\|\ \sin\frac A2\ +\ \sin\frac B2\ +\ \sin\frac C2\ \ge\ \frac 54\ +\ \frac r{2R}\ \right\|}} \) (Tudorel Lupu, G.M. 11/2007)

Dem. Aplicam inegalitatea lui Popoviciu functiei \( \underline{\cos} \) , care pe intervalul \( \left\(0\ ,\ \frac{\pi}{2}\right\) \) este concava :

\( \cos A+\cos B+\cos C+3\cos\frac{A+B+C}{3}\ \le\ 2\cos\frac{A+B}{2}+2\cos\frac{B+C}{2}+2\cos\frac{C+A}{2} \)

\( \Longleftrightarrow\ 1+\frac rR+\frac 32\ \le\ 2\sum\ \sin\frac A2\
\Longleftrightarrow\ \overline{\underline{\left\|\ \sin\frac A2\ +\ \sin\frac B2\ +\ \sin\frac C2\ \ge\ \frac 54\ +\ \frac r{2R}\ \right\|}} \)


===================================================================================

Acum, revenim la inegalitatea initiala pe care o ridicam la patrat : \( \left\(\sum\ \sqrt{\frac{b+c-a}a}\right\)^2\ \ge\ 9\ \Longleftrightarrow \)

\( \sum\ \frac{b+c-a}a+2\sum\sqrt{\frac{(c+a-b)(a+b-c)}{bc}}\ \ge\ 9\ \Longleftrightarrow\ \sum\ \left\(\frac ab+\frac ba\right)-3+2\sum\sqrt{\frac{4(p-b)(p-c)}{bc}}\ \ge\ 9 \)

\( \Longleftrightarrow\ \sum\ \frac{a^2+b^2}{ab}+4\sum\ \sin\frac A2\ \ge\ 12 \) . Tinand cont de inegalitatea demonstrata mai sus e suficient sa aratam ca

\( \sum\ \frac{a^2+b^2}{ab}+4\left\(\frac 54+\frac r{2R}\right\)\ \ge\ 12\ \Longleftrightarrow\ \sum\ \frac{c^2+2ab\cos C}{ab}+\frac{2r}{R}\ \ge\ 7\ \Longleftrightarrow\ \sum\ \frac{c^2}{ab}+2\sum\ \cos C+\frac {2r}R\ \ge\ 7 \)

\( \Longleftrightarrow\ \frac{a^3+b^3+c^3}{abc}+2+\frac{2r}{R}+\frac{2r}{R}\ \ge\ 7\ \Longleftrightarrow\ \frac{2p(p^2-6Rr-3r^2)}{4Rrp}+\frac{4r}{R}\ \ge\ 5\ \Longleftrightarrow\ \frac{p^2-6Rr-3r^2}{2Rr}+\frac{4r}{R}\ \ge\ 5 \)

\( \Longleftrightarrow\ \frac{p^2-6Rr-3r^2+8r^2}{2Rr}\ \ge\ 5\ \Longleftrightarrow\ p^2+5r^2\ \ge\ 16Rr\ \ \ \) O.K.
radu tanse
Arhimede
Posts: 9
Joined: Mon Feb 01, 2010 1:31 pm

Re: O inegalitate a lui S. Radulescu & I.V. Maftei.

Post by radu tanse »

Domnule profesor Nicula, va sugerez sa deschideti cartea "INEGALITATI. Idei si metode" de Mihai Onucu Drambe, la pagina 232, inegalitatea 119, apoi sa deconditionati conditia triunghi ascutit unghic in substitutiile a=y+z, b=z+x, c=x+y. O sa descoperiti o demonstratie elementara!

Multa sanatate!

:wink: beat`it :lol:
Virgil Nicula
Euler
Posts: 622
Joined: Fri Sep 28, 2007 11:23 pm

Post by Virgil Nicula »

Multumesc pentru informatie. Frumoasa demonstratia lui M.C. !
User avatar
Cezar Lupu
Site Admin
Posts: 612
Joined: Wed Sep 26, 2007 2:04 pm
Location: Bucuresti sau Constanta
Contact:

Re: O inegalitate a lui S. Radulescu & I.V. Maftei.

Post by Cezar Lupu »

radu tanse wrote:Domnule profesor Nicula, va sugerez sa deschideti cartea "INEGALITATI. Idei si metode" de Mihai Onucu Drambe, la pagina 232, inegalitatea 119, apoi sa deconditionati conditia triunghi ascutit unghic in substitutiile a=y+z, b=z+x, c=x+y. O sa descoperiti o demonstratie elementara!

Multa sanatate!

:wink: beat`it :lol:
Unde esti?????? :lol:
An infinite number of mathematicians walk into a bar. The first one orders a beer. The second orders half a beer. The third, a quarter of a beer. The bartender says “You’re all idiots”, and pours two beers.
Virgil Nicula
Euler
Posts: 622
Joined: Fri Sep 28, 2007 11:23 pm

Post by Virgil Nicula »

Eu zic sa nu-l ambitionezi prea tare ca poate o face. La cat "umor" are ar fi in stare si ce ne facem ?! :(
Post Reply

Return to “Clasa a IX-a”