Concursul Nicolae Paun, editia 2009, subiectul I

Moderators: Bogdan Posa, Laurian Filip

Post Reply
User avatar
Andi Brojbeanu
Bernoulli
Posts: 294
Joined: Sun Mar 22, 2009 6:31 pm
Location: Targoviste (Dambovita)

Concursul Nicolae Paun, editia 2009, subiectul I

Post by Andi Brojbeanu »

Sa se arate ca daca \( a, b, c \) sunt strict pozitive cu proprietatea \( a^2+b^2-ab=c^2, \) atunci \( (a-c)(b-c)\leq 0 \). Cand are loc egalitatea?

Vasile Gorgota
mihai++
Bernoulli
Posts: 206
Joined: Wed Nov 28, 2007 8:08 pm
Location: Focsani

Post by mihai++ »

Fie \( a\leq b \).
\( c^2=(a-b)^2+ab\rightarrow c^2\geq ab\geq a^2\rightarrow c\geq a \)
\( c^2=b^2+a(a-b)\leq b^2\rightarrow c\leq b \) si concluzia e evidenta.
n-ar fi rau sa fie bine :)
Marius Mainea
Gauss
Posts: 1077
Joined: Mon May 26, 2008 2:12 pm
Location: Gaesti (Dambovita)

Post by Marius Mainea »

\( c^2=a^2+b^2-ab< (a+b)^2 \)

\( c^2=(a-b)^2+ab>(a-b)^2 \)

deci a, b, c pot fi laturile unui triunghi.

In general, daca \( c^2=a^2+b^2-2ab\cos\phi \), atunci exista un triunghi de laturi a, b, c si unghiul dintre a si b sa fie \( \phi \).

In cazul nostru triunghiul avand un unghi de \( 60^{\circ} \), atunci unul din celelalte doua este \( \le 60^{\circ} \) iar celalalt \( \ge 60^{\circ} \) si de aici \( a\le c\le b \) sau \( a\ge c\ge b \).
Robert_Samoilescu95
Arhimede
Posts: 7
Joined: Sat Jan 02, 2010 8:14 pm

Post by Robert_Samoilescu95 »

\( a^2 +b^2-ab=c^2 <=> a^2 -c^2= ab-b^2 <=> (a+c) (a-c)=b(a-b) <=> a-c = \frac{b(a-b)}{a+c} \) (1) .
Analog se obtine \( b-c= \frac{a(b-a)}{b+c} \) (2)
Din (1) si (2) prin inmultire se obtine ca \( (a-c)(b-c)= \frac{b(a-b)a(b-a)}{(a+c)(b+c)} = \frac{-ab(a-b)^2}{(a+c)(b+c)} \) care e evident \( \leq 0 \). Egalitate pt a=b.
Virgil Nicula
Euler
Posts: 622
Joined: Fri Sep 28, 2007 11:23 pm

Post by Virgil Nicula »

Fie numerele pozitive \( a\ ,\ b\ ,\ c \) pentru care \( a^2+b^2-ab=c^2 \) . Sa se arate ca \( (c-a)(c-b)\leq 0 \).
Dem. Putem presupune fara a restrange generalitatea ca \( a\le b \). Deci

\( a^2=a\cdot b+a^2-ab\ \le\ \underline{b\cdot b+a\cdot a-ab}\ \le\ b^2+a\cdot b-ab=b^2\ \Longrightarrow \)

\( a^2\ \le\ c^2\ \le\ b^2\ \Longrightarrow\ a\ \le\ c\ \le\ b\ \Longrightarrow\ (c-a)(c-b)\ \le\ 0 \).

Observatie. \( \min\ \{a\ ,\ b\}\ \le\ \sqrt {\frac {a^2+b^2}{2}}\ \le\ \sqrt{a^2+b^2-ab}\ =\ c\ \le\ \max\ \{a\ ,\ b\} \) .

Dupa parerea mea, demonstratia lui Robert_Samoilescu95 permite urmatorul enunt extins:
Consideram numerele reale \( a\ ,\ b\ ,\ c \) pentru care \( ab(c+a)(c+b)\ >\ 0 \).

Sa se arate ca \( a^2+b^2-ab=c^2\ \Longrightarrow\ (c-a)(c-b)\le 0 \).
\( c^2=a^2+b^2-ab\ \Longrightarrow\ \left\|\ \begin{array}{c}
(c+a)(c-a)=b(b-a)\\\\\\\\
(c+b)(c-b)=a(a-b)\end{array}\ \right\|\ \Longrightarrow \)


\( (c+a)(c+b)(c-a)(c-b)=-ab(a-b)^2\ \Longrightarrow\ (c-a)(c-b)\ \le\ 0. \)
Post Reply

Return to “Clasa a VIII-a”