Concursul Nicolae Paun editia 2009 subiectul III

Moderators: Bogdan Posa, Laurian Filip

Post Reply
User avatar
Andi Brojbeanu
Bernoulli
Posts: 294
Joined: Sun Mar 22, 2009 6:31 pm
Location: Targoviste (Dambovita)

Concursul Nicolae Paun editia 2009 subiectul III

Post by Andi Brojbeanu »

Fie patru puncte necoplanare \( A, B, C, D \) astfel incat \( DA\perp (ABC) \), \( m(\angle{BAC})=120\textdegree \) si punctul \( M\in (BC) \) cu proprietatea ca \( 2BM=MC \).
Demonstrati ca \( DM\perp AC\Leftrightarrow AB=AC \).

Constantin Barascu.
User avatar
Andi Brojbeanu
Bernoulli
Posts: 294
Joined: Sun Mar 22, 2009 6:31 pm
Location: Targoviste (Dambovita)

Post by Andi Brojbeanu »

\( "\Leftarrow" \):\( AB=AC\Rightarrow m(\angle{ABC})=30\textdegree \).
Daca \( BM=a \), atunci \( AB=AC=a\sqrt{3} \) si \( AM=\sqrt{AB^2+BM^2-2AB\cdot BM\cdot cos(30\textdegree)}=\sqrt{a^2+3a^2-a\cdot a\sqrt{3}\cdot\sqrt{3}}=\sqrt{a^2+3a^2-3a^2}=\sqrt{a^2}=a \).
In \( \bigtriangleup{AMC} \), avem \( MC^2=AM^2+AC^2 \)(\( 4a^2=a^2+3a^2 \)), deci triunghiul este dreptunghic, adica \( MA\perp AC\Rightarrow AC\perp MA \).
Din \( DA\perp (ABC)\Rightarrow DA\perp AC\Rightarrow AC\perp DA \).
Din \( AC\perp DA \) si \( AC\perp MA \Rightarrow AC\perp (DAM)\Rightarrow AC\perp DM\Rightarrow DM\perp AC \).
\( "\Rightarrow" \): \( DM\perp AC\Rightarrow AC\perp DM \).
Din \( DA\perp (BAC)\Rightarrow DA\perp AC\Rightarrow AC\perp DA \).
Din \( AC\perp DM \) si \( AC\perp DA\Rightarrow AC\perp (DAM)\Rightarrow AC\perp MA \).
Fie \( N \) mijlocul lui \( [MC] \).Notam \( BM=MN=NC=a, AB=c, AC=b \). Evident, \( AN=\frac{MC}{2}=a \).
In \( \bigtriangleup{BAN} \), din teorema medianei obtinem ca:\( AM^2=\frac{2(AB^2+AN^2)-BN^2}{4}=\frac{2(c^2+a^2)-(2a)^2}{4}=\frac{2c^2+2a^2-4a^2}{4}=\frac{2c^2-2a^2}{4}=\frac{c^2-a^2}{2} \).
Din teorema lui Pitagora in \( \bigtriangleup{MAC} \), obtinem ca \( AC^2=MC^2-AM^2=4a^2-\frac{c^2-a^2}{2}=\frac{8a^2-c^2+a^2}{2}=\frac{9a^2-c^2}{2} \).
Dar \( AC^2=b^2 \). Rezulta ca \( \frac{9a^2-c^2}{2}=b^2 \), deci \( 9a^2=2b^2+c^2 \).
Din teorema cosinuslui in \( \bigtriangleup{ABC} \) avem ca \( BC^2=AB^2+AC^2-2AB\cdot AC\cdot cos(\angle{BAC}) \), deci \( 9a^2=b^2+c^2-2\cdot b\cdot c\cdot (-\frac{1}{2})=b^2+c^2+bc \).
Prin egalarea ultimelor doua relatii obtinute, obtinem ca \( 2b^2+c^2=b^2+c^2+bc \), adica \( b^2=bc \) sau \( b=c \). Deci, \( AB=AC \).
Post Reply

Return to “Clasa a VIII-a”