Fie \( A, B\in M_{2}(\mathbb{R}) \) doua matrice astfel incat \( \det(AB-BA)\geq0 \). Sa se arate ca \( \det(A^{2}+B^{2})\geq(\det A- \det B) ^{2} \).
Mihai Opincariu
Vezi cazul particular de aici.
Intarirea unei inegalitati de pe mateforum
Moderators: Bogdan Posa, Laurian Filip, Beniamin Bogosel, Radu Titiu, Marius Dragoi
-
opincariumihai
- Thales
- Posts: 134
- Joined: Sat May 09, 2009 7:45 pm
- Location: BRAD
-
Marius Mainea
- Gauss
- Posts: 1077
- Joined: Mon May 26, 2008 2:12 pm
- Location: Gaesti (Dambovita)
Folosim relatia :
\( \det(X+Y)=\det X+\tr(XY^{\ast})+\det Y \)
Asadar \( \det (AB-BA)=\det AB-\tr[(AB)(BA)^{\ast}]+\det BA\ge 0 \),
de unde
\( 2\det AB\ge \tr([(AB)(BA)^{\ast}] \) (***)
Pe de alta parte concluzia se scrie :
\( \det A^2+\tr[A^2(B^2)^{\ast}]+\det B^2\ge \det A^2-2\det AB+\det B^2 \) sau
\( 2\det AB+\tr [A^2(B^2)^{\ast}]\ge 0 \)
Insa folosind (***) e suficient sa aratam ca \( \tr[(AB)(BA)^{\ast}]+\tr[A^2(B^2)^{\ast}]\ge 0 \) care este evidenta.
\( \det(X+Y)=\det X+\tr(XY^{\ast})+\det Y \)
Asadar \( \det (AB-BA)=\det AB-\tr[(AB)(BA)^{\ast}]+\det BA\ge 0 \),
de unde
\( 2\det AB\ge \tr([(AB)(BA)^{\ast}] \) (***)
Pe de alta parte concluzia se scrie :
\( \det A^2+\tr[A^2(B^2)^{\ast}]+\det B^2\ge \det A^2-2\det AB+\det B^2 \) sau
\( 2\det AB+\tr [A^2(B^2)^{\ast}]\ge 0 \)
Insa folosind (***) e suficient sa aratam ca \( \tr[(AB)(BA)^{\ast}]+\tr[A^2(B^2)^{\ast}]\ge 0 \) care este evidenta.
-
opincariumihai
- Thales
- Posts: 134
- Joined: Sat May 09, 2009 7:45 pm
- Location: BRAD
-
Marius Mainea
- Gauss
- Posts: 1077
- Joined: Mon May 26, 2008 2:12 pm
- Location: Gaesti (Dambovita)