Fie \( A,B\in M_{2n+1}(\mathbb{R}) \) astfel incat \( A^2-B^2=I_{2n+1} \). Demonstrati ca \( \det(AB-BA)=0 \).
Mihai Opincariu G.M.B. 2008
Matrice singulara
Moderators: Bogdan Posa, Laurian Filip, Beniamin Bogosel, Radu Titiu, Marius Dragoi
-
opincariumihai
- Thales
- Posts: 134
- Joined: Sat May 09, 2009 7:45 pm
- Location: BRAD
-
Marius Mainea
- Gauss
- Posts: 1077
- Joined: Mon May 26, 2008 2:12 pm
- Location: Gaesti (Dambovita)
Se arata usor ca \( AB^2A=BA^2B \), deci matricile AB si BA comuta.
De aici \( (AB-BA)^{2p+1}=(AB)^{2p+1}-C_{2p+1}^1(AB)^{2p}(BA)+...-(BA)^{2p+1} \) si aplicand urma obtinem \( \tr(AB-BA)^{2p+1}=0 \) pentru orice p natural.
De aici folosind Formulele lui Newton obtinem ca AB-BA are cel putin o valoare proprie nula, deci are determinantul 0.
Intr-adevar, daca \( t_1,t_2,...t_{2n+1} \) sunt valorile proprii ale matricei AB-BA, atunci:
\( \left{\begin{array}{cc}t_1+t_2+...+t_{2n+1}=0\\t_1^3+t_2^3+...+t_{2n+1}^3=0\\...............................................\\t_1^{2n+1}+t_2^{2n+1}+...+t_{2n+1}^{2n+1}=0\end{array} \)
Insa
1) \( s_p-s_{p-1}\sigma_1+s_{p-2}\sigma_2-...+(-1)^{p-1}s_1\sigma_{p-1}+(-1)^p\sigma_p=0 ,(\forall)p\in\mathbb{N^{\ast}},1\le p\le 2n+1 \)
si
2) \( s_p-s_{p-1}\sigma_1+s_{p-1}\sigma_2-...+(-1)^{2n+1}s_{p-2n-1}\sigma_{2n+1}=0 , (\forall)p\in\mathbb{N^{\ast}},p\ge 2n+2 \),
de unde succesiv
p=1: \( s_1-\sigma_1=0 \) de unde \( \sigma_1=s_1=0 \)
p=3: \( s_3-s_2\sigma_1+s_2\sigma_2-3\sigma_3=0 \) de unde \( \sigma_3=0 \)
p=5: \( s_5-s_4\sigma_1+s_3\sigma_2-s_2\sigma_3+s_2\sigma_4-5\sigma_5=0 \) de unde \( \sigma_5=0 \)
Recursiv obtinem \( \sigma_p=0 \) pentru orice p impar \( 1\le p\le 2n+1 \), deci \( t_1\cdot t_2\cdot ....\cdot t_{2n+1}=0 \).
Notatii: \( s_p=\sum t_1^p=\sum_{i=1}^{2n+1}t_i^p \) si \( \sigma_k=\sum t_1t_2...t_k=\sum_{1\le i_1< i_2<...\le n}t_{i_1}t_{i_2}...t_{i_k} \)
De aici \( (AB-BA)^{2p+1}=(AB)^{2p+1}-C_{2p+1}^1(AB)^{2p}(BA)+...-(BA)^{2p+1} \) si aplicand urma obtinem \( \tr(AB-BA)^{2p+1}=0 \) pentru orice p natural.
De aici folosind Formulele lui Newton obtinem ca AB-BA are cel putin o valoare proprie nula, deci are determinantul 0.
Intr-adevar, daca \( t_1,t_2,...t_{2n+1} \) sunt valorile proprii ale matricei AB-BA, atunci:
\( \left{\begin{array}{cc}t_1+t_2+...+t_{2n+1}=0\\t_1^3+t_2^3+...+t_{2n+1}^3=0\\...............................................\\t_1^{2n+1}+t_2^{2n+1}+...+t_{2n+1}^{2n+1}=0\end{array} \)
Insa
1) \( s_p-s_{p-1}\sigma_1+s_{p-2}\sigma_2-...+(-1)^{p-1}s_1\sigma_{p-1}+(-1)^p\sigma_p=0 ,(\forall)p\in\mathbb{N^{\ast}},1\le p\le 2n+1 \)
si
2) \( s_p-s_{p-1}\sigma_1+s_{p-1}\sigma_2-...+(-1)^{2n+1}s_{p-2n-1}\sigma_{2n+1}=0 , (\forall)p\in\mathbb{N^{\ast}},p\ge 2n+2 \),
de unde succesiv
p=1: \( s_1-\sigma_1=0 \) de unde \( \sigma_1=s_1=0 \)
p=3: \( s_3-s_2\sigma_1+s_2\sigma_2-3\sigma_3=0 \) de unde \( \sigma_3=0 \)
p=5: \( s_5-s_4\sigma_1+s_3\sigma_2-s_2\sigma_3+s_2\sigma_4-5\sigma_5=0 \) de unde \( \sigma_5=0 \)
Recursiv obtinem \( \sigma_p=0 \) pentru orice p impar \( 1\le p\le 2n+1 \), deci \( t_1\cdot t_2\cdot ....\cdot t_{2n+1}=0 \).
Notatii: \( s_p=\sum t_1^p=\sum_{i=1}^{2n+1}t_i^p \) si \( \sigma_k=\sum t_1t_2...t_k=\sum_{1\le i_1< i_2<...\le n}t_{i_1}t_{i_2}...t_{i_k} \)
-
opincariumihai
- Thales
- Posts: 134
- Joined: Sat May 09, 2009 7:45 pm
- Location: BRAD
Re: Matrice singulara
Pentru \( X=A-B , Y=A+B \) relatia din enunt se scrie \( XY-I=I-YX \) si cum se stie ca \( \det(XY-I)=\det(YX-I) \) obtinem \( \det(XY-I)=0 \) adica \( \det(AB-BA)=0 \) . 