Inegalitate cu determinant

Moderators: Bogdan Posa, Laurian Filip, Beniamin Bogosel, Radu Titiu, Marius Dragoi

Post Reply
opincariumihai
Thales
Posts: 134
Joined: Sat May 09, 2009 7:45 pm
Location: BRAD

Inegalitate cu determinant

Post by opincariumihai »

Daca \( A,B \) sunt doua matrice reale de ordin 2 sau 3 si \( (AB-BA)^2=O \), aratati ca \( \det(A^2+B^2)\geq0 \)

Mihai Opincariu

Observatie: Daca matricele sunt de ordinul 2 cautati http://www.mateforum.ro/viewtopic.php?t=297
Marius Mainea
Gauss
Posts: 1077
Joined: Mon May 26, 2008 2:12 pm
Location: Gaesti (Dambovita)

Post by Marius Mainea »

Pentru ordinul 2 e clar.

Daca ordinul e 3 folosim relatia :

\( \det(X+Y)=\det X+\tr(XY^{\ast})+\tr(X^{\ast}Y)+\det Y \) pentru orice matrice X si Y de ordinul 3.

Asadar \( \det(X+Y)+\det(X-Y)=2[\det X+\tr(XY^{\ast})] \)

La fel ca in cazul ordinului 2 se obtine

\( 2\det(A+iB)(A-iB)=2[\det(A^2+B^2)+\tr[(A^2+B^2)[i(AB-BA)]^{\ast}=2\det(A^2+B^2)\ge 0 \),

deoarece \( rang(AB-BA)\le 1 \) (justificati!).
Post Reply

Return to “Algebra”