In legatura cu o problema de la ONM 1996

Moderators: Bogdan Posa, Laurian Filip, Beniamin Bogosel, Radu Titiu, Marius Dragoi

Post Reply
opincariumihai
Thales
Posts: 134
Joined: Sat May 09, 2009 7:45 pm
Location: BRAD

In legatura cu o problema de la ONM 1996

Post by opincariumihai »

Fie A, B doua matrice de ordinul 2 cu elementele reale astfel incat \( \det(AB-BA)=\det(AB+BA) \). Aratati ca \( \det(A^2+B^2)\geq0 \)
Last edited by opincariumihai on Sat May 23, 2009 5:57 pm, edited 4 times in total.
Bogdan Cebere
Thales
Posts: 145
Joined: Sun Nov 04, 2007 1:04 pm

Post by Bogdan Cebere »

Banuiesc ca este in legatura cu problema propusa de Cristinel Mortici la ONM 1996:
Fie \( A,B \in M_2 (R) \) doua matrice a.i. \( \det(AB+BA) \leq 0 \). Demonstrati ca avem inegalitatea \( \det(A^2+B^2) \geq 0 \).

Aici, ca si acolo, pornim de la relatia \( \det(X+Y)+ \det(X-Y)=2( \det X+ \det Y) \) si folosim polinomul \( f(X+tY)=(\det Y) t^2 +at+ \det X \).
opincariumihai
Thales
Posts: 134
Joined: Sat May 09, 2009 7:45 pm
Location: BRAD

Post by opincariumihai »

Acum mai ramane de studiat cazul det(AB+BA)>0 care este echivalent, folosind ipoteza, cu det(AB-BA)>0. Incercati http://www.mateforum.ro/viewtopic.php?t=297.
mihai++
Bernoulli
Posts: 206
Joined: Wed Nov 28, 2007 8:08 pm
Location: Focsani

Post by mihai++ »

Ar putea sa posteze cineva (va rog) o solutie la Problema de la ONM 1996?
n-ar fi rau sa fie bine :)
User avatar
Laurian Filip
Site Admin
Posts: 344
Joined: Sun Nov 25, 2007 2:34 am
Location: Bucuresti/Arad
Contact:

Post by Laurian Filip »

Bogdan Cebere wrote:Aici, ca si acolo, pornim de la relatia \( \det(X+Y)+ \det(X-Y)=2( \det X+ \det Y) \) si folosim polinomul \( f(X+tY)=(\det Y) t^2 +at+ \det X \).
Pentru \( X=A^2+B^2 \) si \( Y=AB+BA \)
\( 0 \leq \det^2(A+B)+\det^2(A-B)=2(\det(A^2+B^2)+\det(AB+BA)) \)
Marius Mainea
Gauss
Posts: 1077
Joined: Mon May 26, 2008 2:12 pm
Location: Gaesti (Dambovita)

Post by Marius Mainea »

Inca \( \det (A+iB)(A-iB)=\det[A^2+B^2+i(BA-AB)]\ge 0 \) si \( \det (A-iB)(A+iB)=\det[A^2+B^2-i(BA-AB)]\ge 0 \), deci \( 2(\det(A^2+B^2)+\det[i(BA-AB)]\ge 0 \) (1)
\( \det(A^2+B^2)-\det(AB+BA)\ge 0 \) (2)

Prin adunarea lui (1) impartita la 2 cu (2) rezulta concluzia.
mihai++
Bernoulli
Posts: 206
Joined: Wed Nov 28, 2007 8:08 pm
Location: Focsani

Post by mihai++ »

La ultimul pas ati schimbat un semn si nu e corect.
n-ar fi rau sa fie bine :)
Post Reply

Return to “Algebra”