Doua matrice comuta, atunci una este polinom de cealalta?

Moderators: Bogdan Posa, Laurian Filip, Beniamin Bogosel, Radu Titiu, Marius Dragoi

Post Reply
User avatar
Cezar Lupu
Site Admin
Posts: 612
Joined: Wed Sep 26, 2007 2:04 pm
Location: Bucuresti sau Constanta
Contact:

Doua matrice comuta, atunci una este polinom de cealalta?

Post by Cezar Lupu »

Sa se determine cel mai mare numar natural \( n\geq 2 \) cu proprietatea ca
daca \( A\in M_{n}(\mathbb{C}) \), \( A\neq\lambda I_{n} \), pentru orice \( \lambda\in\mathbb{C} \), atunci pentru \( B\in M_{n}(\mathbb{C}) \) urmatoarele afirmatii sunt echivalente:

i) \( AB=BA \);

ii) exista \( a_{0}, a_{1}, \ldots , a_{n}\in\mathbb{C} \) astfel incat
\( B=a_{0}I_{n}+a_{1}A+\ldots +a_{n-1}A^{n-1} \). (D. Busneag - Shortlist RMO 2006 si Titeica 2006)
An infinite number of mathematicians walk into a bar. The first one orders a beer. The second orders half a beer. The third, a quarter of a beer. The bartender says “You’re all idiots”, and pours two beers.
Post Reply

Return to “Algebra”