0*infinit

Moderators: Bogdan Posa, Laurian Filip, Beniamin Bogosel, Radu Titiu, Marius Dragoi

Post Reply
User avatar
Andrei Ciupan
Euclid
Posts: 19
Joined: Thu Sep 27, 2007 8:34 pm

0*infinit

Post by Andrei Ciupan »

Sa se calculeze (daca exista, si banuiesc ca exista) \( \displaystyle\lim_{n\mapsto \infty} n\left(\sqrt[n] n- \sqrt[n+1]{n+1} \right) \).
Andrei Ciupan.
User avatar
Radu Titiu
Thales
Posts: 155
Joined: Fri Sep 28, 2007 5:05 pm
Location: Mures \Bucuresti

Post by Radu Titiu »

Notez \( x_n =\frac{\sqrt[n+1]{n+1}}{\sqrt[n]{n}} \).

Avem \( \lim_{n\to\infty}x_n^n=\lim_{n\to\infty}(1+x_n-1)^n=\lim_{n\to\infty} e^{n(x_n-1)} \).

Dar \( \lim_{n\to\infty}x_n^n = \lim_{n\to\infty} \frac{\sqrt[n+1]{(n+1)^n}}{n}=1 \).

Atunci \( \lim_{n\to\infty}n(x_n-1)=0 \). Deci si limita cautata e 0.
A mathematician is a machine for turning coffee into theorems.
Virgil Nicula
Euler
Posts: 622
Joined: Fri Sep 28, 2007 11:23 pm

Re: 0*infinit

Post by Virgil Nicula »

Virgil Nicula wrote:Sa se arate ca \( \displaystyle\lim_{n\to\infty}\ \frac {n^2}{\ln n}\cdot \left(\sqrt[n] n\ -\ \sqrt[n+1]{n+1} \right)\ =\ 1\ . \)
Stim ca \( \lim_{n\to\infty }\ \sqrt[n]n=1 \) si \( \lim_{x\to 0}\ \frac {e^x-1}{x}=1\ , \) adica \( \left|\ \begin{array}{c}
x_n\rightarrow 0\\\\
x_n\ne 0\ (\forall )\ n\in\mathbb N^*\end{array}\ \right|\ \Longrightarrow\ \lim_{n\to\infty}\ \frac {e^{x_n}-1}{x_n}=1\ . \)


\( L\equiv\ \lim_{n\to\infty }\ \frac {n^2}{\ln n}\cdot \left(\sqrt[n] n\ -\ \sqrt[n+1]{n+1} \right)=\lim_{n\to\infty}\ \frac {n^2}{\ln n}\ \cdot\ \sqrt[n+1]{n+1}\ \cdot\ \frac {e^{x_n}-1}{x_n}\ , \) unde \( x_n=\frac {(n+1)\ln n-n\ln (n+1)}{n(n+1)} \)

si \( x_n\ \rightarrow\ 0\ . \) Asadar, \( L=\lim_{n\to\infty }\ \frac {n^2}{\ln n}\cdot x_n=\lim_{n\to\infty }\ \frac {(n+1)\ln n-n\ln (n+1)}{\ln n}=\lim_{n\to\infty }\ \frac {\ln n-\ln\left(1+\frac 1n\right)^n}{\ln n}=1\ . \)

Consecinta. \( \lim_{n\to\infty}\ n\cdot \left(\sqrt[n] n\ -\ \sqrt[n+1]{n+1} \right)\ =\lim_{n\to\infty}\ \frac {\ln n}{n}\ \cdot\ \frac {n^2}{\ln n}\left(\sqrt[n] n\ -\ \sqrt[n+1]{n+1} \right)\ =0\ \cdot\ 1=\ 0\ . \)
aleph
Thales
Posts: 123
Joined: Mon Dec 24, 2007 2:06 am

Post by aleph »

Iată şi o generalizare dusă puţin dincolo de limita suportabilului :D :
Să se arate că:

\(
\lim_{n\rightarrow \infty }n^{4}[(\sqrt[n]{n}-\sqrt[n+1]{n+1})-({\frac{\ln
(n)}{{n}^{2}}}-\frac{1}{n^{2}}+{\frac{(\ln (n))^{2}}{{n}^{3}}}-{\frac{2\ln
(n)}{{n}^{3}}+}\frac{3}{2n^{3}}+{\frac{(\ln (n))^{3}}{2{n}^{4}}}-{\frac{
2(\ln (n))^{2}}{{n}^{4}}+\frac{7\ln (n)}{2{n}^{4}}})]=-7/3
\)
Virgil Nicula
Euler
Posts: 622
Joined: Fri Sep 28, 2007 11:23 pm

Post by Virgil Nicula »

aleph wrote:Iată şi o generalizare dusă puţin dincolo de limita suportabilului :D
OFF-topic. Deci se poate si mai mult ?! :D Si cand ma gandesc ca Andrei si cu mine nu am vrut sa depasim anumite limite .... Poate ne oferiti si o demonstratie, ca cel putin mie mi se pare dusa si putin dincolo de limita frumusetii acceptate. Daca mai vad doua, trei asemenea generalizari cred ca ma duc la carciuma sa ma conving ca mai exista si altceva in afara de matematica ... Numai bine si sper ca nu v-ati suparat pe mine !
aleph
Thales
Posts: 123
Joined: Mon Dec 24, 2007 2:06 am

Post by aleph »

Dezvoltarea (asimptotică) a fost găsită simplu cu Maple.
Se poate şi manual, scriind
\( \sqrt[n]{n} = e^x \), unde \( x = \ln (n)/n \)
şi dezvoltând Taylor \( e^x \).
Similar (dar cu nişte complicaţii) pentru celălalt termen.
Virgil Nicula
Euler
Posts: 622
Joined: Fri Sep 28, 2007 11:23 pm

Post by Virgil Nicula »

Multumesc Aleph, dar te rog sa nu mai vii cu asemenea extinderi ca ma apuca ameteala ...
enescu
Pitagora
Posts: 60
Joined: Tue May 20, 2008 10:08 pm

Post by enescu »

Alternativ, daca \( f(x)=x^{\frac1x} \), atunci limita este \( n(f(n)-f(n+1)) \), dar \( f(n)-f(n+1)=-f^{,}(c_n) \), cu \( c_n \in (n,n+1) \), din Lagrange. Cum evident \( \frac{c_n}{n} \rightarrow 1 \), ramane de calculat \( \displaystyle \lim_{x\to \infty}xf^{,}(x) \), adica \( \displaystyle \lim_{x\to \infty}e^{\frac{\ln x}{x}} \cdot \frac{1-\ln x}{x}=0 \)
Bogdan Enescu
Virgil Nicula
Euler
Posts: 622
Joined: Fri Sep 28, 2007 11:23 pm

Post by Virgil Nicula »

Frumoasa demonstratie, dle Enescu ! Voi aplica ideea dvs. la sirul care

"satureaza" sirul initial, adica
\( \overline {\underline{\left\|\ \displaystyle\lim_{n\to\infty}\ \frac {n^2}{\ln n}\cdot \left(\sqrt[n] n\ -\ \sqrt[n+1]{n+1} \right)\ =\ 1\ \right\|}}\ . \)

Functiei Rolle \( f(x)=x^{\frac 1x}\ ,\ x\in [n,n+1]\ ,\ n\in\mathbb N^* \) a carei functie-derivata este \( f^{\prim}(x)=x^{\frac 1x}\cdot\frac {1-\ln x}{x^2} \)

ii aplicam teorema Lagrange : exista \( n\ <\ c_n\ <\ n+1 \) astfel incat \( f(n+1)-f(n)=c_n^{\frac {1}{c_n}}\cdot\frac {1-\ln c_n}{c_n^2}\ . \)

Se observa ca \( c_n\rightarrow\infty \) , \( c_n^{\frac {1}{c_n}}\rightarrow 1 \) si \( \left\|\ \begin{array}{ccc}
\ln n\ <\ \ln c_n\ <\ \ln (n+1) & \Longrightarrow & \frac {\ln c_n}{\ln n}\rightarrow 1\\\\\\\\
\frac {n}{n+1}\ <\ \frac {n}{c_n}\ <\ 1 & \Longrightarrow & \frac {n}{c_n}\rightarrow 1\end{array}\ \right\|\ . \)
Asadar,

\( \displaystyle\lim_{n\to\infty}\ \frac {n^2}{\ln n}\cdot \left(\sqrt[n] n\ -\ \sqrt[n+1]{n+1} \right)\ =-\displaystyle\lim_{n\to\infty}\ \frac {n^2}{\ln n}\cdot \left[f(n+1)-f(n)\right]=-\lim_{n\to\infty}\ c_n^{\frac {1}{c_n}}\cdot \left(\frac {n}{c_n}\right)^2\cdot\left(\frac {1}{\ln n}-\frac {\ln c_n}{\ln n}\right)=1\ . \)
Post Reply

Return to “Analiza matematica”