Sa se arate ca pentru orice numar natural \( n \) exista un numar natural \( m \) astfel incat
\( (1+\sqrt{2})^{n}=\sqrt{m}+\sqrt{m+1} \).
Concurs "Stelele matematicii" 2007
Pentru orice numar natural n exista m natural
Moderators: Filip Chindea, maky, Cosmin Pohoata
- Cezar Lupu
- Site Admin
- Posts: 612
- Joined: Wed Sep 26, 2007 2:04 pm
- Location: Bucuresti sau Constanta
- Contact:
-
Adriana Nistor
- Pitagora
- Posts: 82
- Joined: Thu Aug 07, 2008 10:07 pm
- Location: Drobeta Turnu Severin, Mehedinti
Vom folosi inductia.
Pentru \( n=1 \) avem \( (1+\sqrt{2})^1=1+\sqrt{2}=\sqrt{1}+\sqrt{2} \), \( m=1 \).
Pentru \( n=2 \) avem \( (1+\sqrt{2})^2=3+2\sqrt{2}=\sqrt{8}+\sqrt{9} \), \( m=8 \).
Daca pentru \( n=k \) exista \( m \), atunci demonstram ca pentru \( n=k+1 \) exista \( m \).
\( (1+\sqrt{2})^{n+1}=(1+\sqrt{2})^n\cdot(1+\sqrt{2})= \)
\( (\sqrt{m}+\sqrt{m+1})(1+\sqrt{2})=\sqrt{m}+\sqrt{m+1}+\sqrt{2m}+\sqrt{2m+2}= \)
\( \sqrt{3m+1+2\sqrt{2m(m+1)}}+\sqrt{3m+2+2\sqrt{2m(m+1)}} \).
Ar mai trebui sa aratam ca \( \sqrt{2m(m+1)} \) e numar natural, ceea ce se demonstreaza tot prin inductie.
Pentru \( n=1 \) avem \( (1+\sqrt{2})^1=1+\sqrt{2}=\sqrt{1}+\sqrt{2} \), \( m=1 \).
Pentru \( n=2 \) avem \( (1+\sqrt{2})^2=3+2\sqrt{2}=\sqrt{8}+\sqrt{9} \), \( m=8 \).
Daca pentru \( n=k \) exista \( m \), atunci demonstram ca pentru \( n=k+1 \) exista \( m \).
\( (1+\sqrt{2})^{n+1}=(1+\sqrt{2})^n\cdot(1+\sqrt{2})= \)
\( (\sqrt{m}+\sqrt{m+1})(1+\sqrt{2})=\sqrt{m}+\sqrt{m+1}+\sqrt{2m}+\sqrt{2m+2}= \)
\( \sqrt{3m+1+2\sqrt{2m(m+1)}}+\sqrt{3m+2+2\sqrt{2m(m+1)}} \).
Ar mai trebui sa aratam ca \( \sqrt{2m(m+1)} \) e numar natural, ceea ce se demonstreaza tot prin inductie.
-
Virgil Nicula
- Euler
- Posts: 622
- Joined: Fri Sep 28, 2007 11:23 pm
Draguta problema ! Se poate face si direct, fara a scrie prea mult, insa trebuie cunoscut binomul lui Newton.
Raspuns : daca \( n \) este par, atunci \( m=f(n)=\left(\sum_{k=0}^{\frac n2}C_n^{2k}2^k\right)^2-1 \) ; in caz contrar, \( m=\left(\sum_{k=0}^{\frac {n-1}{2}}C_n^{2k}2^k\right)^2 \) .
Exemple. Notam \( m=f(n) \) , \( n\in \mathbb{N}^* \) .
\( \odot\ \ m=f(4)=\left(C_4^0\cdot 2^0+C_4^2\cdot 2^1+C_4^4\cdot 2^2\right)^2-1=17^2-1=18\cdot 16 \) , \( m+1=17^2 \) iar \( \left(1+\sqrt 2\right)^4=17+12\sqrt 2 \) .
\( \odot\ \ m=f(5)=\left(C_5^0\cdot 2^0+C_5^2\cdot 2^1+C_5^4\cdot 2^2\right)^2=41^2 \) , \( m+1=41^2+1=2\cdot 29^2 \) iar \( \left(1+\sqrt 2\right)^5=41+29\sqrt 2 \) .
Raspuns : daca \( n \) este par, atunci \( m=f(n)=\left(\sum_{k=0}^{\frac n2}C_n^{2k}2^k\right)^2-1 \) ; in caz contrar, \( m=\left(\sum_{k=0}^{\frac {n-1}{2}}C_n^{2k}2^k\right)^2 \) .
Exemple. Notam \( m=f(n) \) , \( n\in \mathbb{N}^* \) .
\( \odot\ \ m=f(4)=\left(C_4^0\cdot 2^0+C_4^2\cdot 2^1+C_4^4\cdot 2^2\right)^2-1=17^2-1=18\cdot 16 \) , \( m+1=17^2 \) iar \( \left(1+\sqrt 2\right)^4=17+12\sqrt 2 \) .
\( \odot\ \ m=f(5)=\left(C_5^0\cdot 2^0+C_5^2\cdot 2^1+C_5^4\cdot 2^2\right)^2=41^2 \) , \( m+1=41^2+1=2\cdot 29^2 \) iar \( \left(1+\sqrt 2\right)^5=41+29\sqrt 2 \) .
-
Adriana Nistor
- Pitagora
- Posts: 82
- Joined: Thu Aug 07, 2008 10:07 pm
- Location: Drobeta Turnu Severin, Mehedinti
-
Virgil Nicula
- Euler
- Posts: 622
- Joined: Fri Sep 28, 2007 11:23 pm
OFF-topic. Adriana, in ce clasa esti ? Am rugat de mai multe ori userii elevi sa mentioneze in profil clasa. Raspunsul meu depinde de asta. Deoarece stii inductie (ceea ce nu-i mare lucru totusi, se poate face si la clase mai mici) banuiesc ca ai fi in clasa a X - a ... Astept raspunsul tau. Numai bine, V.N.
Last edited by Virgil Nicula on Sat Jan 31, 2009 6:57 pm, edited 1 time in total.
-
Adriana Nistor
- Pitagora
- Posts: 82
- Joined: Thu Aug 07, 2008 10:07 pm
- Location: Drobeta Turnu Severin, Mehedinti
-
Virgil Nicula
- Euler
- Posts: 622
- Joined: Fri Sep 28, 2007 11:23 pm
Apreciez ca imediat dupa ce te-am rugat ai mentionat la profil clasa. Si acum
(cu deosebita placere !) iata cum am ajuns la acea expresie a lui \( m=f(n) \) .
Se observa ca \( \left(1+\sqrt 2\right)^n=\sum_{k=0}^nC_n^k2^{\frac k2}=\sqrt {m+1}+\sqrt m \) si \( \left(1-\sqrt 2\right)^n=\sum_{k=0}^n(-1)^kC_n^k2^{\frac k2}=(-1)^n\left(\sqrt {m+1}-\sqrt m\right) \)
deoarece \( \left(1+\sqrt 2\right)^n\cdot \left(1-\sqrt 2\right)^n=(-1)^n \) si \( \left(\sqrt {m+1}+\sqrt m\right)\cdot\left(\sqrt {m+1}-\sqrt m\right)=1 \) . Realizam suma
\( \left(1+\sqrt 2\right)^n+\left(1-\sqrt 2\right)^n=2\cdot\sum_{k=0}^{\left[\frac n2\right]}C_n^{2k}2^k \) . Insa \( \left(1+\sqrt 2\right)^n+\left(1-\sqrt 2\right)^n=\left[1+(-1)^n\right]\cdot\sqrt {m+1}+\left[1-(-1)^n\right]\cdot\sqrt m \) . Deci
\( 2\cdot\sum_{k=0}^{\left[\frac n2\right]}C_n^{2k}2^k=\left[1+(-1)^n\right]\cdot\sqrt {m+1}+\left[1-(-1)^n\right]\cdot\sqrt m \) de unde rezulta concluzia in functie de paritatea lui \( n \) .
(cu deosebita placere !) iata cum am ajuns la acea expresie a lui \( m=f(n) \) .
Se observa ca \( \left(1+\sqrt 2\right)^n=\sum_{k=0}^nC_n^k2^{\frac k2}=\sqrt {m+1}+\sqrt m \) si \( \left(1-\sqrt 2\right)^n=\sum_{k=0}^n(-1)^kC_n^k2^{\frac k2}=(-1)^n\left(\sqrt {m+1}-\sqrt m\right) \)
deoarece \( \left(1+\sqrt 2\right)^n\cdot \left(1-\sqrt 2\right)^n=(-1)^n \) si \( \left(\sqrt {m+1}+\sqrt m\right)\cdot\left(\sqrt {m+1}-\sqrt m\right)=1 \) . Realizam suma
\( \left(1+\sqrt 2\right)^n+\left(1-\sqrt 2\right)^n=2\cdot\sum_{k=0}^{\left[\frac n2\right]}C_n^{2k}2^k \) . Insa \( \left(1+\sqrt 2\right)^n+\left(1-\sqrt 2\right)^n=\left[1+(-1)^n\right]\cdot\sqrt {m+1}+\left[1-(-1)^n\right]\cdot\sqrt m \) . Deci
\( 2\cdot\sum_{k=0}^{\left[\frac n2\right]}C_n^{2k}2^k=\left[1+(-1)^n\right]\cdot\sqrt {m+1}+\left[1-(-1)^n\right]\cdot\sqrt m \) de unde rezulta concluzia in functie de paritatea lui \( n \) .