\( \frac{x}{\ln x}>\frac{2}{\ln 2} \)
Search found 206 matches
- Mon May 03, 2010 4:04 pm
- Forum: Clasa a X-a
- Topic: Functia exponentiala
- Replies: 6
- Views: 255
- Thu Mar 18, 2010 7:51 am
- Forum: Analiza matematica
- Topic: functie
- Replies: 15
- Views: 1001
- Fri Mar 12, 2010 9:18 am
- Forum: Analiza matematica
- Topic: Sir
- Replies: 3
- Views: 351
- Wed Mar 10, 2010 3:15 pm
- Forum: Analiza matematica
- Topic: Sir convergent
- Replies: 5
- Views: 449
- Wed Mar 10, 2010 3:07 pm
- Forum: Analiza matematica
- Topic: Sir
- Replies: 3
- Views: 351
x_{n+1}=f(x_{n}) cu f=\frac{2}{1+x^2} . f ia valori doar in (0,2] si pe [0,2] e descrescatore. Consider cazurile x_3\geq x_1 si x_3<x_1 care se trateaza analog: Deci x_3\geq x_1\rightarrow x_4\leq x_2 \rightarrow x_5\geq x_3 , si asa mai departe obtinem ca (x_{2k}) e descrescator si (x_{2k+1}) e cr...
- Tue Mar 09, 2010 8:54 am
- Forum: Analiza matematica
- Topic: sir
- Replies: 6
- Views: 360
- Mon Mar 08, 2010 9:13 pm
- Forum: Analiza matematica
- Topic: sir
- Replies: 6
- Views: 360
- Mon Mar 08, 2010 3:32 pm
- Forum: Analiza matematica
- Topic: Functie
- Replies: 1
- Views: 263
Sa presupunem ca f e discontinua. Fiind crescatoare are doar discontinuitati de speta 1 si atunci presupunem: \lim_{x\to x_0 \\ x<x_0} f(x)<f(x_0)\leq \lim_{x\to x_0\\x>x_0}f(x) caci f e crescatoare. Cum inegalitatile sunt independente una de cealalta, alegem in stanga x_n=x_0-\frac{1}{n} , iar in d...
- Mon Mar 08, 2010 3:22 pm
- Forum: Analiza matematica
- Topic: sir
- Replies: 6
- Views: 360
Din x_{n+1}-2x_1x_n+x_{n-1}=0 avem x_n=au^n+bv^n cu u,v solutiile ecuatiei t^2-2x_1t+1=0 , daca x_1\neq1 si x_n=a+nb , daca x_1=1 . Astfel ca in primu caz: x_0=1 \rightarrow a+b=1\\ x_{670}=0\rightarrow au^{670}+bv^{670}=0 \rightarrow a=\frac{v^{670}}{v^{670}-u^{670}},b=\frac{-u^{670}}{v^{670}-u^{67...
- Mon Mar 08, 2010 11:35 am
- Forum: Analiza matematica
- Topic: functie din gazeta
- Replies: 0
- Views: 295
functie din gazeta
Sa se determine toate functiile \( f: (0,\infty)\to(0,\infty) \), care satisfac relatia:
\( f(xy+f(x))=\frac{1}{2}((f(x)+f(y)),\forall x,y\in(0,\infty) \).
\( f(xy+f(x))=\frac{1}{2}((f(x)+f(y)),\forall x,y\in(0,\infty) \).
- Sun Mar 07, 2010 9:22 am
- Forum: Algebra
- Topic: Determinant nenegativ
- Replies: 15
- Views: 858
- Fri Mar 05, 2010 6:51 pm
- Forum: Analiza matematica
- Topic: inegalitate
- Replies: 3
- Views: 339
- Tue Mar 02, 2010 2:43 pm
- Forum: Algebra
- Topic: Determinant nenegativ
- Replies: 15
- Views: 858
M am uitat mai bine la demonstratia lui Radu la lema cu suma valorilor proprii si are o hiba. Adica nu cred ca e corecta demonstratia. Acolo unde inmulteste pe total nu prea are voie sa egaleze caci pierde niste x ca vectori proprii intre matricile acelea si deci lema nu e inca demonstrata. In schim...
- Mon Mar 01, 2010 4:22 pm
- Forum: Algebra
- Topic: Determinant nenegativ
- Replies: 15
- Views: 858
- Fri Feb 26, 2010 11:25 am
- Forum: Algebra
- Topic: polinoame de matrici
- Replies: 2
- Views: 288
polinoame de matrici
Fie \( A\in \mathcal{M}_{2,n}(\mathbb{C}),B\in\mathcal{M}_{n,2}(\mathbb{C}). \) Demonstrati ca \( f_{BA}=z^{n-2}f_{AB} \). Nu stiu daca e adevarata, dar am auzit ca e in culegerea Fadeev-Sominski.
- Fri Feb 26, 2010 11:20 am
- Forum: Algebra
- Topic: Determinant nenegativ
- Replies: 15
- Views: 858
- Fri Feb 26, 2010 9:32 am
- Forum: Algebra
- Topic: Determinant nenegativ
- Replies: 15
- Views: 858