Search found 5 matches

by harq
Fri Sep 28, 2007 9:56 am
Forum: Algebra
Topic: Cardinalul produsului a doua subgrupuri finite
Replies: 0
Views: 918

Cardinalul produsului a doua subgrupuri finite

Daca \( (G, \cdot) \) este un grup si \( H,K \) sunt subgrupuri finite ale sale, sa se calculeze \( |HK| \) unde \( HK=\{h\cdot k|h\in H \) si \( k\in K\} \).
by harq
Fri Sep 28, 2007 9:53 am
Forum: Analiza matematica
Topic: Numar de radacini in [0,1]
Replies: 2
Views: 938

Numar de radacini in [0,1]

Fie \( f: [0,1] \rightarrow \mathbb{R} \) continua. Daca \( \int_{0}^{1}x^k f(x) dx =0 \) pentru \( k=\overline{0,n} \), atunci \( f \) are cel putin \( n+1 \) radacini in intervalul \( [0,1] \).
by harq
Fri Sep 28, 2007 9:44 am
Forum: Analiza matematica
Topic: Lema Bellman-Gronwall
Replies: 1
Views: 761

O solutie posibila

Inmultim cu v(t)>0 si obtinem u(t)v(t)\leq v(t) \left(M+\int_{0}^{t}u(s)v(s)ds \right) Notam F(t)=\int_{0}^{t}u(s)v(s)ds , atunci \frac{F^{,}(t)} {M+F(t)} \leq v(t) \Leftrightarrow ln \left( M+F(t) \right) ^{,} \leq v(t). Acum integram pe un interval [0,x] . ln(M+F(x))-ln M \leq \int_{0}^{x} v(t)dt ...
by harq
Wed Sep 26, 2007 11:45 pm
Forum: Algebra
Topic: Determinanti pozitivi
Replies: 3
Views: 765

\( \det (A+I) =\det(A^2+A+I)= \det(A-\epsilon I) \det( A- \epsilon^2 I)= \) \( \det(A-\epsilon I) \overline{\det(A-\epsilon I)}= |\det (A-\epsilon I)| ^2\geq 0 \)
by harq
Wed Sep 26, 2007 11:42 pm
Forum: Teoria Numerelor
Topic: Ecuatie
Replies: 1
Views: 1047

Ecuatie

Determinati solutiile intregi ale ecuatiei \( x^2+y^2+z^2=x^2 y^2 \).

Go to advanced search