Search found 5 matches
- Fri Sep 28, 2007 9:56 am
- Forum: Algebra
- Topic: Cardinalul produsului a doua subgrupuri finite
- Replies: 0
- Views: 918
Cardinalul produsului a doua subgrupuri finite
Daca \( (G, \cdot) \) este un grup si \( H,K \) sunt subgrupuri finite ale sale, sa se calculeze \( |HK| \) unde \( HK=\{h\cdot k|h\in H \) si \( k\in K\} \).
- Fri Sep 28, 2007 9:53 am
- Forum: Analiza matematica
- Topic: Numar de radacini in [0,1]
- Replies: 2
- Views: 938
Numar de radacini in [0,1]
Fie \( f: [0,1] \rightarrow \mathbb{R} \) continua. Daca \( \int_{0}^{1}x^k f(x) dx =0 \) pentru \( k=\overline{0,n} \), atunci \( f \) are cel putin \( n+1 \) radacini in intervalul \( [0,1] \).
- Fri Sep 28, 2007 9:44 am
- Forum: Analiza matematica
- Topic: Lema Bellman-Gronwall
- Replies: 1
- Views: 761
O solutie posibila
Inmultim cu v(t)>0 si obtinem u(t)v(t)\leq v(t) \left(M+\int_{0}^{t}u(s)v(s)ds \right) Notam F(t)=\int_{0}^{t}u(s)v(s)ds , atunci \frac{F^{,}(t)} {M+F(t)} \leq v(t) \Leftrightarrow ln \left( M+F(t) \right) ^{,} \leq v(t). Acum integram pe un interval [0,x] . ln(M+F(x))-ln M \leq \int_{0}^{x} v(t)dt ...
- Wed Sep 26, 2007 11:45 pm
- Forum: Algebra
- Topic: Determinanti pozitivi
- Replies: 3
- Views: 765
- Wed Sep 26, 2007 11:42 pm
- Forum: Teoria Numerelor
- Topic: Ecuatie
- Replies: 1
- Views: 1047
Ecuatie
Determinati solutiile intregi ale ecuatiei \( x^2+y^2+z^2=x^2 y^2 \).