Page 1 of 1

Functii derivabile si inecuatie diferentiala cu primitive

Posted: Sat Jan 19, 2008 3:51 pm
by Cezar Lupu
a) Daca \( f:\mathbb{R}\to\mathbb{R} \) este o functie derivabila marginita superior, iar \( f\prime \) este crescatoare pe \( \mathbb{R} \), atunci \( f \) este constanta.

b) Determinati functiile derivabile \( f:\mathbb{R}\to\mathbb{R} \) stiind ca \( f \) admite o primitiva \( F:\mathbb{R}\to\mathbb{R} \) astfel incat

\( 2f(x)-f\prime (x)\leq F(x)\leq e^{x}, \forall x\in\mathbb{R} \).

Posted: Sat Jan 19, 2008 5:37 pm
by Alin Galatan
a) Te uiti la \( \frac{f(x+1)-f(x)}{(x+1)-x}=f^\prime (c_x) \) cu \( c_x\in (x,x+1). \)
Avem atunci ca \( f(n)-f(0) = \sum f^\prime (c_i) \).
Membrul stang e marginit (din ipoteza, caci f e marginita), deci si membrul drept e marginit, deci f' e fortat sa tinda la 0 spre \( \infty \).
Analog spre \( -\infty \).
Cum f' e crescatoare, inseamna ca e constant 0, deci f e constanta.

O forma mai tare ar putea fi "singura functie convexa de la R la R, marginita, este functia constanta." Si nu mai folosesti derivate :).