Produs de expresii, own
Posted: Thu Dec 13, 2007 10:21 pm
Pentru numerele reale \( u, v, w > 0 \) si \( r \) definim
\( F_r(u, v, w) \ := (u - v)(u + w)^r + (u - w)(u + v)^r \).
Demonstrati ca pentru orice \( a, b, c > 0 \) si \( r \in \mathbb{R} \),
\( \sum \frac{F_r(b, c, a) \cdot F_r(c, a, b)}{(b + c)^{r-2}} \le 0 \).
\( F_r(u, v, w) \ := (u - v)(u + w)^r + (u - w)(u + v)^r \).
Demonstrati ca pentru orice \( a, b, c > 0 \) si \( r \in \mathbb{R} \),
\( \sum \frac{F_r(b, c, a) \cdot F_r(c, a, b)}{(b + c)^{r-2}} \le 0 \).