Inegalitate din RMT 3/2010
Posted: Mon Sep 20, 2010 6:51 pm
Aratati ca daca \( a,\ b,\ c\ge0 \), cel mult unul din numere egal cu \( 0 \) , avem \( \frac{a^{2}+bc}{\left(a+b\right)\left(a+c\right)}+\frac{b^{2}+ca}{\left(b+c\right)\left(b+a\right)}+\frac{c^{2}+ab}{\left(c+a\right)\left(c+b\right)}\ge\frac{a+b}{a+b+2c}+\frac{b+c}{b+c+2a}+\frac{c+a}{c+a+2b} \).