Page 1 of 1
Ecuatie exponentiala cu functii trigonometrice
Posted: Sat Nov 10, 2007 10:55 pm
by heman
Rezolvati ecuatia \( 2^{tanx}+2^{cotx}=2cot2x. \)
Posted: Sat Nov 10, 2007 11:32 pm
by Wizzy
Cred ca acolo e \( 2^{tgx}-2^{ctgx} \)!
Notam \( tg x =a \). Cum \( tg 2x=\frac{2tg x}{1-tg^2 x } \), ecuatia se rescrie sub forma echivalenta
\( 2^a-2^{\frac{1}{a}}=\frac{1-a^2}{a}=\frac{1}{a}-a \),
echivalent cu
\( 2^a+a=2^{\frac{1}{a}}+\frac{1}{a}. \)
Daca luam functia \( f(x)=2^x+x \) avem ca \( f \) este injectiva.
Cum ecuatia este echivalenta cu \( f(a)=f(\frac{1}{a}) \) rezulta \( a=\frac{1}{a} \) de unde obtinem \( tg x=1 \), deci solutiile ecuatiei sunt \( x \in \left{\frac{\pi}{4}+k \pi | k\in \mathbb{Z}\right} \).