Page 1 of 1
Rafinare a inegalitatii lui Gerettsen
Posted: Sun Jun 06, 2010 9:06 pm
by opincariumihai
Aratati ca in orice triunghi are loc inegalitatea :
\( a^2+b^2+c^2 \leq 8R^2+4r^2 \cdot\frac{2p}{3\sqrt{3}R} \)
Posted: Sun Jun 13, 2010 9:34 pm
by Mateescu Constantin
Am rezolvat-o

... Revin putin mai tarziu, caci acum joaca favorita mea la CM, Germania ...
Posted: Sun Jun 13, 2010 9:36 pm
by opincariumihai
Mateescu Constantin wrote:Am rezolvat-o
Pai atunci sa o publicam undeva , voba lui Cezar...
Posted: Sun Jun 13, 2010 10:47 pm
by Laurentiu Tucaa
O sa castige Spania,zic eu.Deschid si un topic pe tema asta.
Posted: Sun Jun 13, 2010 11:36 pm
by Mateescu Constantin
\( \fbox{\ \triangle\ \ ABC\ \ \Longrightarrow\ a^2\ +\ b^2\ +\ c^2\ \le\ 8R^2\ +\ 4r^2\ \cdot\ \frac{2p}{3R\sqrt 3}\ } \)
Dacă rescriem inegalitatea sub forma \( a^2\ +\ b^2\ +\ c^2\ -\ 8R^2\ \le\ 4r^2\ \cdot\ \frac{2p}{3R\sqrt 3} \) ea devine evidentă în cazul triunghiului neascuţitunghic ,
deoarece \( a^2\ +\ b^2\ +\ c^2\ -\ 8R^2\ \le\ 0 \) (vezi
aici ) .
Aşadar este suficient să arătăm inegalitatea în cazul triunghiului ascuţitunghic .
Aplicăm inegalitatea lui Popoviciu funcţiei \( \underline{\tan} \), care pe intervalul \( \left(\ 0\ ,\ \frac{\pi}{2}\ \right) \) este convexă: \( \sum\tan\ A\ +\ 3\cdot\tan\ 60^{\circ}\ \ge\ 2\sum\tan\ \frac{B+C}2 \)
\( \Longleftrightarrow\ \sum\ \tan\ A\ +\ 3\sqrt 3\ \ge\ 2\sum\ \frac{1+cos A}{sin A}\ \Longleftrightarrow\ \sum\ \tan\ A\ +\ 3\sqrt 3\ \ge\ 2\sum\ \cot\frac A2\ \Longleftrightarrow\ \fbox{\ \sum\ \tan\ A\ \ge\ \frac{2p-3r\sqrt 3}{r}\ } \) .
Mai mult, ţinând cont şi de identitatea \( \fbox{\ \sum\ \tan\ A\ =\ \prod\ \tan\ A\ =\ \frac{2rp}{p^2-(2R+r)^2}\ } \) (adevărată pentru triunghiurile nedreptunghice) ,
ultima inegalitate se scrie : \( \frac{2rp}{p^2-(2R+r)^2}\ \ge\ \frac{2p-3r\sqrt 3}{r}\ \Longleftrightarrow\ 2(p^2-4Rr-r^2)(2p-3r\sqrt 3)\ \le\ 4pr^2\ +\ 8R^2(2p-3r\sqrt 3)\ \Longleftrightarrow \)
\( \Longleftrightarrow\ a^2\ +\ b^2\ +\ c^2\ \le\ 8R^2\ +\ \frac{4pr^2}{2p-3r\sqrt 3} \) . Prin urmare, este suficient să demonstrăm că : \( \frac{4pr^2}{2p-3r\sqrt 3}\ \le\ 4r^2\ \cdot\ \frac {2p}{3R\sqrt 3}\ \Longleftrightarrow \)
\( \Longleftrightarrow\ 3\sqrt 3(R+2r)\ \le\ 4p\ \Longleftrightarrow\ 16p^2\ \ge\ 27R^2+108Rr+108r^2 \) . Comparând-o cu inegalitatea Walker i.e. \( p^2\ \ge\ 2R^2+8Rr+3r^2 \)
rămâne să arătăm că : \( 32R^2+128Rr+48r^2\ \ge\ 27R^2+108Rr+108r^2\ \Longleftrightarrow\ 5R^2+20Rr\ \ge\ 60r^2\ \Longleftrightarrow\ (R-2r)(R+4r)\ \ge\ 0 \) ,
ceea ce este adevărat conform inegalităţii lui Euler : \( R\ \ge\ 2r \) .
Posted: Mon Jun 14, 2010 12:20 am
by opincariumihai
Intr-adevar ai gasit-o

!
Se pare ca Walker si mai ales Popoviciu si-au dovedit din nou utilitatea .
Da ca sa te incurc un pic , Constantine , ia incearca acum urmatoarea problema :
Aratati ca in orice triunghi are loc inegalitatea :
\( a^2+b^2+c^2 \leq 8R^2+4r^2 \cdot\frac{4p^2}{27R^2} \)
Re: Rafinare a inegalitatii lui Gerettsen
Posted: Mon Jun 14, 2010 4:09 am
by Cezar Lupu
opincariumihai wrote:Aratati ca in orice triunghi are loc inegalitatea :
\( a^2+b^2+c^2 \leq 8R^2+4r^2 \cdot\frac{2p}{3\sqrt{3}R} \)
De ce am impresia ca este echivalenta cu inegalitatea (problema 11341) din AMM??! Tin minte ca la fel am facut-o si eu. Am aplicat Popoviciu pentru functia
\( \tan x \) pe intervalul
\( \left(0, \frac{\pi}{2}\right) \) si cateva manipulari trigonometrice. Pentru detalii, a se vedea urmatorul link:
http://trungtuan.files.wordpress.com/20 ... v_2008.pdf
Posted: Tue Jun 15, 2010 2:31 am
by Mateescu Constantin
\( \fbox{\ \triangle\ ABC\ \Longrightarrow\ a^2\ +\ b^2\ +\ c^2\ \le\ 8R^2\ +\ 4r^2\ \cdot\ \frac{4p^2}{27R^2}\ } \)
Inegalitatea este echivalenta cu : \( 27R^2(p^2-4Rr-r^2)\ \le\ 108R^4\ +\ 8p^2r^2\ \Longleftrightarrow \)
\( \Longleftrightarrow\ p^2(27R^2-8r^2)\ \le\ 108R^4\ +\ 108R^3r\ +\ 27R^2r^2\ \Longleftrightarrow\ \fbox{\ p^2\ \le\ \frac{27R^2(2R+r)^2}{27R^2-8r^2}\ }\ \ (\ast) \) .
Potrivit inegalităţii Blundon (vezi aici) avem : \( \fbox{\ p^2\ \le\ 2R^2\ +\ 10Rr\ -\ r^2\ +\ 2(R-2r)\sqrt{R(R-2r)}\ } \) .
Prin urmare, rămân de arătat echivalenţele :
\( \ \ \ \ \fbox{\ \begin{array}{ccccc}
& \ & \frac{27R^2(2R+r)^2}{27R^2-8r^2}-(2R^2+10Rr-r^2)\ \ge\ 2(R-2r)\sqrt{R(R-2r)} \\\\\\\\\\\\\\\\\\
& \stackrel{\large t=\frac Rr}{\Longleftrightarrow} & \frac{27t^2\cdot r^4(2t+1)^2}{r^2(27t^2-8)}\ -\ r^2(2t^2+10t - 1)\ \ge\ 2r^2(t-2)\sqrt{t(t-2)} \\\\\\\\\\\\\\\
& \Longleftrightarrow & 27t^2(2t+1)^2\ -\ (27t^2-8)(2t^2+10t-1)\ \ge\ 2(t-2)(27t^2-8)\sqrt{t(t-2)} \\\\\\\\\\\\\\\\
& \Longleftrightarrow & 2(t-2)(27t^3-27t^2-19t+2)\ \ge\ 2(t-2)(27t^2-8)\sqrt{t(t-2)} \\\\\\\\\\\\\\\\
& \Longleftrightarrow & (27t^3-27t^2-19t+2)^2\ \ge\ t(t-2)(27t^2-8) \\\\\\\\\\\\\\\
& \Longleftrightarrow & (15t^2+10t+1)(3t+2)^2\ \ge\ 0\ \ \ \ \ \mbox{O.K.}\ \end{array}\ } \)
Observatii :
\( \odot\ \) Două forme echivalente ale acestei inegalităţi sunt : \( \fbox{\ \begin{array}{cccccc}
& \bullet & 1\ \le\ \left(\frac{2R+r}p\right)^2\ +\ \left(\frac{2\sqrt 2}{3\sqrt 3}\ \cdot\ \frac rR\right)^2 \\\\\\\\\\
& \bullet & \prod\ (1-\cos A)\ \ge\ \frac{27R^2}{4p^2}\ \cdot\ \prod\ \cos A\ \end{array}\ } \) .
\( \odot\ \) Inegalitatea\( \ (\ast) \) constituie o intarire a inegalitatii \( \fbox{\ p^2\ \le\ \frac{R(4R+r)^2}{2(2R-r)}\ } \) , care se poate deduce din
distanta \( \fbox{\ H\Gamma^2=4R^2\[1-\frac{2p^2(2R-r)}{R(4R+r)^2}\]\ } \) , unde \( H \) este ortocentrul, iar \( \Gamma \) este punctul lui Gergonne .
Intr-adevar inegalitatea \( \frac{27R^2(2R+r)^2}{27R^2-8r^2}\ \le\ \frac{R(4R+r)^2}{2(2R-r)} \) se reduce la \( (R-2r)(7R+4r)r^2\ \ge\ 0\ \ \ \mbox{O.K.} \)
Asadar, intr-un triunghi avem urmatorul lant de inegalitati :
\( \ \ \ \fbox{\ p^2\ \le\ 2R^2\ +\ 10Rr\ -\ r^2\ +\ 2(R-2r)\sqrt{R(R-2r)}\ \le\ \frac{27R^2(2R+r)^2}{27R^2-8r^2}\ \le\ \frac{R(4R+r)^2}{2(2R-r)}\ } \) .