Inegalitate diferential-integrala
Posted: Fri Nov 09, 2007 7:49 pm
Daca \( f:[0, \infty) \to\mathbb{R} \) este o functie derivabila cu derivata continua atunci \( | f(x) | \leq | f(0) | +\int_0^x | f(t)+ f^\prime (t)|dt \), oricare ar fi \( x\geq 0 \).