Page 1 of 1
Shortlist ONM 2010,pb 24
Posted: Tue Apr 13, 2010 7:53 pm
by Laurentiu Tucaa
Fie \( f:[0,1]\rightarrow\mathbb{R} \) continua si n natural \( n\ge3 \).Aratati ca exista o progresie aritmetica de n numere \( a_1,...,a_n \) a.i. \( \int_0^1 f(x)dx=\frac{1}{n}\sum_{k=1}^n f(a_k) \).
***
Posted: Wed Jun 02, 2010 7:50 pm
by opincariumihai
Problema este propusă de Lae Bourbăcuţ, Hunedoara

Posted: Wed Jun 02, 2010 9:26 pm
by Beniamin Bogosel
Problema e interesanta daca \( f \) nu e constanta.
O idee care o am este sa condsideram punctele in care \( f \) ia valorile maxima si minima, \( f(m) < f(M) \). Consideram progresiile aritmetice de ratie \( \varepsilon,\ m\pm k \varepsilon,\ M\pm k\varepsilon \), unde semnul plus sau minus il alegem in functie pozitiile lui \( m,M \) (probleme ar fi in 0 sau in 1).
notam cu \( g(\varepsilon)=\sum_k f(m\pm k\varepsilon) \) si \( h(\varepsilon)=\sum_k f(M\pm k\varepsilon) \).
notam cu \( C=\int_0^1 f(x)dx \) atunci \( C \in (f(m),f(M)) \). Prin trecere la limita pentru \( \varepsilon \to 0 \) avem \( \lim_{\varepsilon \to 0} g(\varepsilon)=f(m) \) si \( \lim_{\varepsilon \to 0} h(\varepsilon)=f(M) \) obtinem ca exista \( \varepsilon >0 \) astfel incat \( g(\varepsilon)<C<h(\varepsilon) \).
Astfel, vom cauta o progresie aritmetica de ratie \( \varepsilon \) definind \( \phi(x)=\sum f(x\pm k\varepsilon) \) care este continua, si atinge valori mai mari si mai mici decat \( C \). Prin urmare exista o progresie aritmetica cu proprietatea ceruta.
Posted: Wed Jun 02, 2010 9:30 pm
by Beniamin Bogosel
opincariumihai wrote:Problema este propusă de Lae Bourbăcuţ, Hunedoara

Doar asa, ca o remarca amuzanta, domnul care a propus problema asta are numele care pare ca e un diminutiv de la Bourbaki, faimosul grup de matematicieni francezi.

Posted: Wed Jun 02, 2010 9:45 pm
by enescu
Beniamin Bogosel wrote:
Doar asa, ca o remarca amuzanta, domnul care a propus problema asta are numele care pare ca e un diminutiv de la Bourbaki, faimosul grup de matematicieni francezi.

Chiar aşa şi e

Chestia e intenţionată. Cu acest pseudonim semnează 2 binecunoscuţi propunători de probleme.
Posted: Wed Jun 02, 2010 11:17 pm
by opincariumihai
enescu wrote:
Chiar aşa şi e

Chestia e intenţionată. Cu acest pseudonim semnează 2 binecunoscuţi propunători de probleme.
Va rog domnule "enescu" sa nu va hazardati in deconspirari "internationale"...
Posted: Wed Jun 02, 2010 11:19 pm
by enescu
" deconspirari "internationale"..."
WTF?
Posted: Wed Jun 02, 2010 11:34 pm
by opincariumihai
enescu wrote:" deconspirari "internationale"..."
WTF?
Vroiam sa zic in gluma , citand cuvintele dumneavoastra , sa-l lasati pe D-l BOURBACUT sa-si vada de problemele lui

Posted: Wed Jun 02, 2010 11:38 pm
by enescu
OK, o să le transmit domnilor respectivi...
Posted: Mon Jun 07, 2010 11:08 am
by opincariumihai
Consideram o diviziune echidistanta a intervalului \( [0.1] \) formata din punctele \( x_k=\frac{k}{n} \) si functia \( g(t)= \sum_{k=0}^{n-1}\frac{1}{n}f(tx_k+(1-t)x_{k+1}) \) .
Din teorema de medie aplicata acestei functii exista \( c\in(0,1) \) cu \( g(c)=\int_{0}^{1}g(t)dt \) . Dar \( \int_{0}^{1}g(t)d=\sum_{k=0}^{n-1}\int_{0}^{1}\frac{1}{n}f(tx_k+(1-t)x_{k+1})dt=\frac{1}{n}\sum_{k=0}^{n-1}\int_{x_k}^{x_{k+1}}\frac{f(s)}{x_{k+1}-x_k} ds=\int_{0}^{1}f(t)dt\ \) si va fi suficient sa aleg \( a_k=cx_k+(1-c)x_{k+1} \) care e prog. cu ratia \( \frac{1}{n} \).