Page 1 of 1

inegalitate in triunghi dreptunghic

Posted: Sun Mar 07, 2010 2:15 pm
by baleanuAR
Intr-un triunghi \( ABC \) exista relatia: \( \frac{1}{r}+\frac{1}{r_{a}}\leq\frac{1}{R}\left(\frac{1}{\sin B}+\frac{1}{\sin C}\right) \). Demonstrati ca \( m(\angle A)=90^{\circ} \).

Gazeta Matematica nr. 10/2007

Posted: Sun Mar 07, 2010 3:58 pm
by Theodor Munteanu
Se folosesc relatiile:\( r = ptg\frac{A}{2},r_a = (p - a)tg\frac{A}{2},b = 2R\sin B \) se aduce la numitor comun si dupa un minim efort de calcul iti va iesi ca \( sinA \geq 1 \) si de aici concluzia.