calcul integrala definita
Posted: Wed Mar 03, 2010 2:56 am
Sa se calculeze integrala:
\( \int_0^{\pi/4}\log\left(\frac{1+\sin t}{1-\sin t}\right)dt \).
\( \int_0^{\pi/4}\log\left(\frac{1+\sin t}{1-\sin t}\right)dt \).
Se observa ca \( \int_{0}^{x}{\frac{dt}{\cos{t}}} = \frac{1}{2} \log \left(\frac{1+\sin{x}}{1-\sin{x}}\right) \). Deci \( \int_0^{\pi/4}\log\left(\frac{1+\sin t}{1-\sin t}\right)dt = 2 \int_{0}^{\pi/4} \left(\frac{\pi}{4} - t \right) \frac{dt}{\cos{t}} \). Restul reprezinta calcule plictisitoare probabil.Cezar Lupu wrote:Sa se calculeze integrala:
\( \int_0^{\pi/4}\log\left(\frac{1+\sin t}{1-\sin t}\right)dt \).