n patrat perfect
Posted: Tue Mar 02, 2010 9:04 pm
Sa se determine n intreg , astfel incat 2^n-2^4+1 sa fie patrat perfect.
\( 2^n=15+m^2\ \Longrightarrow n\ge 4 \ \ \wedge\ \ m=2p+1\ \Longrightarrow\ 2^n=16+4p(p+1)\ \Longrightarrowkatos wrote:Sa se determine \( n \) natural astfel incat \( 2^n-15 \) sa fie patrat perfect.
Virgil Nicula wrote:\( 2^n=15+m^2\ \Longrightarrow n\ge 4 \ \ \wedge\ \ m=2p+1\ \Longrightarrow\ 2^n=16+4p(p+1)\ \Longrightarrowkatos wrote:Sa se determine \( n \) natural astfel incat \( 2^n-15 \) sa fie patrat perfect.
2^{n-4}=1+p(p+1)\ \stackrel {p(p+1)\mathrm{-par}}{\Longrightarrow}\ n=4 \) .
katos wrote: si ce inseamna par ?
enescu wrote:katos wrote: si ce inseamna par ?