Page 1 of 1

n patrat perfect

Posted: Tue Mar 02, 2010 9:04 pm
by katos
Sa se determine n intreg , astfel incat 2^n-2^4+1 sa fie patrat perfect.

Re: n patrat perfect

Posted: Tue Mar 02, 2010 9:51 pm
by Virgil Nicula
katos wrote:Sa se determine \( n \) natural astfel incat \( 2^n-15 \) sa fie patrat perfect.
\( 2^n=15+m^2\ \Longrightarrow n\ge 4 \ \ \wedge\ \ m=2p+1\ \Longrightarrow\ 2^n=16+4p(p+1)\ \Longrightarrow

2^{n-4}=1+p(p+1)\ \stackrel {p(p+1)\mathrm{-par}}{\Longrightarrow}\ n=4 \)
.

Re: n patrat perfect

Posted: Tue Mar 02, 2010 10:15 pm
by katos
Virgil Nicula wrote:
katos wrote:Sa se determine \( n \) natural astfel incat \( 2^n-15 \) sa fie patrat perfect.
\( 2^n=15+m^2\ \Longrightarrow n\ge 4 \ \ \wedge\ \ m=2p+1\ \Longrightarrow\ 2^n=16+4p(p+1)\ \Longrightarrow

2^{n-4}=1+p(p+1)\ \stackrel {p(p+1)\mathrm{-par}}{\Longrightarrow}\ n=4 \)
.


Mersi de raspuns !Dar totusi am doua intrebari de unde m2 si de unde este =m2 cu 2p+1 si ce inseamna par ?

Re: n patrat perfect

Posted: Wed Mar 03, 2010 1:08 am
by enescu
katos wrote: si ce inseamna par ?
:D

Re: n patrat perfect

Posted: Wed Mar 03, 2010 7:48 am
by katos
enescu wrote:
katos wrote: si ce inseamna par ?
:D

da :D , dar mai ramane m2 si de unde este =m2 cu 2p+1